Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpre | Structured version Visualization version GIF version |
Description: A positive real is a real. (Contributed by NM, 27-Oct-2007.) (Proof shortened by Steven Nguyen, 8-Oct-2022.) |
Ref | Expression |
---|---|
rpre | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpssre 12666 | . 2 ⊢ ℝ+ ⊆ ℝ | |
2 | 1 | sseli 3913 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) |
Copyright terms: Public domain | W3C validator |