| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpre | Structured version Visualization version GIF version | ||
| Description: A positive real is a real. (Contributed by NM, 27-Oct-2007.) (Proof shortened by Steven Nguyen, 8-Oct-2022.) |
| Ref | Expression |
|---|---|
| rpre | ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpssre 13042 | . 2 ⊢ ℝ+ ⊆ ℝ | |
| 2 | 1 | sseli 3979 | 1 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ) |
| Copyright terms: Public domain | W3C validator |