![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divge1 | Structured version Visualization version GIF version |
Description: The ratio of a number over a smaller positive number is larger than 1. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
divge1 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 1 ≤ (𝐵 / 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpgecl 12998 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ+) | |
2 | rpcn 12980 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ) | |
3 | rpne0 12986 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ≠ 0) | |
4 | 2, 3 | dividd 11984 | . . . 4 ⊢ (𝐵 ∈ ℝ+ → (𝐵 / 𝐵) = 1) |
5 | 4 | eqcomd 2738 | . . 3 ⊢ (𝐵 ∈ ℝ+ → 1 = (𝐵 / 𝐵)) |
6 | 1, 5 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 1 = (𝐵 / 𝐵)) |
7 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
8 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ+) | |
9 | 8, 1, 1 | lediv2d 13036 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴 ≤ 𝐵 ↔ (𝐵 / 𝐵) ≤ (𝐵 / 𝐴))) |
10 | 7, 9 | mpbid 231 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐵 / 𝐵) ≤ (𝐵 / 𝐴)) |
11 | 6, 10 | eqbrtrd 5169 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 1 ≤ (𝐵 / 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 class class class wbr 5147 (class class class)co 7405 ℝcr 11105 1c1 11107 ≤ cle 11245 / cdiv 11867 ℝ+crp 12970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-rp 12971 |
This theorem is referenced by: fldiv4lem1div2uz2 13797 fprodle 15936 gausslemma2dlem4 26861 2xp3dxp2ge1d 41010 |
Copyright terms: Public domain | W3C validator |