| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rphalflt | Structured version Visualization version GIF version | ||
| Description: Half of a positive real is less than the original number. (Contributed by Mario Carneiro, 21-May-2014.) |
| Ref | Expression |
|---|---|
| rphalflt | ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrp 12892 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
| 2 | halfpos 12351 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (𝐴 / 2) < 𝐴)) | |
| 3 | 2 | biimpa 476 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 / 2) < 𝐴) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 0cc0 11006 < clt 11146 / cdiv 11774 2c2 12180 ℝ+crp 12890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-rp 12891 |
| This theorem is referenced by: rpltrp 13241 rpnnen2lem11 16133 sqrt2irr 16158 metcnpi3 24461 cfilucfil 24474 reperflem 24734 iccntr 24737 icccmplem2 24739 reconnlem2 24743 cnllycmp 24882 bcthlem5 25255 minveclem3 25356 ivthlem2 25380 lhop1lem 25945 dvcnvre 25951 aaliou 26273 aaliou2b 26276 cosordlem 26466 tanord1 26473 argregt0 26546 argrege0 26547 isosctrlem1 26755 asinsin 26829 asin1 26831 atan1 26865 lgamucov 26975 lgsqrlem2 27285 lgsquadlem2 27319 lgsquadlem3 27320 2sqlem8 27364 chebbnd1lem2 27408 pntibnd 27531 pntlem3 27547 ubthlem1 30850 nmcexi 32006 ftc1anc 37751 flt4lem7 42762 isosctrlem1ALT 45036 dstregt0 45393 supxrge 45447 rphalfltd 45563 stoweidlem62 46170 fourierdlem79 46293 |
| Copyright terms: Public domain | W3C validator |