Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rphalflt | Structured version Visualization version GIF version |
Description: Half of a positive real is less than the original number. (Contributed by Mario Carneiro, 21-May-2014.) |
Ref | Expression |
---|---|
rphalflt | ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 12661 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
2 | halfpos 12133 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (𝐴 / 2) < 𝐴)) | |
3 | 2 | biimpa 476 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 / 2) < 𝐴) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 < clt 10940 / cdiv 11562 2c2 11958 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-2 11966 df-rp 12660 |
This theorem is referenced by: rpltrp 13004 rpnnen2lem11 15861 sqrt2irr 15886 metcnpi3 23608 cfilucfil 23621 reperflem 23887 iccntr 23890 icccmplem2 23892 reconnlem2 23896 cnllycmp 24025 bcthlem5 24397 minveclem3 24498 ivthlem2 24521 lhop1lem 25082 dvcnvre 25088 aaliou 25403 aaliou2b 25406 cosordlem 25591 tanord1 25598 argregt0 25670 argrege0 25671 isosctrlem1 25873 asinsin 25947 asin1 25949 atan1 25983 lgamucov 26092 lgsqrlem2 26400 lgsquadlem2 26434 lgsquadlem3 26435 2sqlem8 26479 chebbnd1lem2 26523 pntibnd 26646 pntlem3 26662 ubthlem1 29133 nmcexi 30289 ftc1anc 35785 flt4lem7 40412 isosctrlem1ALT 42443 dstregt0 42709 supxrge 42767 rphalfltd 42885 stoweidlem62 43493 fourierdlem79 43616 |
Copyright terms: Public domain | W3C validator |