MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rphalflt Structured version   Visualization version   GIF version

Theorem rphalflt 12768
Description: Half of a positive real is less than the original number. (Contributed by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
rphalflt (𝐴 ∈ ℝ+ → (𝐴 / 2) < 𝐴)

Proof of Theorem rphalflt
StepHypRef Expression
1 elrp 12741 . 2 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
2 halfpos 12212 . . 3 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (𝐴 / 2) < 𝐴))
32biimpa 477 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 / 2) < 𝐴)
41, 3sylbi 216 1 (𝐴 ∈ ℝ+ → (𝐴 / 2) < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2107   class class class wbr 5075  (class class class)co 7284  cr 10879  0cc0 10880   < clt 11018   / cdiv 11641  2c2 12037  +crp 12739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-2 12045  df-rp 12740
This theorem is referenced by:  rpltrp  13084  rpnnen2lem11  15942  sqrt2irr  15967  metcnpi3  23711  cfilucfil  23724  reperflem  23990  iccntr  23993  icccmplem2  23995  reconnlem2  23999  cnllycmp  24128  bcthlem5  24501  minveclem3  24602  ivthlem2  24625  lhop1lem  25186  dvcnvre  25192  aaliou  25507  aaliou2b  25510  cosordlem  25695  tanord1  25702  argregt0  25774  argrege0  25775  isosctrlem1  25977  asinsin  26051  asin1  26053  atan1  26087  lgamucov  26196  lgsqrlem2  26504  lgsquadlem2  26538  lgsquadlem3  26539  2sqlem8  26583  chebbnd1lem2  26627  pntibnd  26750  pntlem3  26766  ubthlem1  29241  nmcexi  30397  ftc1anc  35867  flt4lem7  40503  isosctrlem1ALT  42561  dstregt0  42827  supxrge  42884  rphalfltd  43002  stoweidlem62  43610  fourierdlem79  43733
  Copyright terms: Public domain W3C validator