Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rphalflt | Structured version Visualization version GIF version |
Description: Half of a positive real is less than the original number. (Contributed by Mario Carneiro, 21-May-2014.) |
Ref | Expression |
---|---|
rphalflt | ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrp 12741 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
2 | halfpos 12212 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (𝐴 / 2) < 𝐴)) | |
3 | 2 | biimpa 477 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 / 2) < 𝐴) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2107 class class class wbr 5075 (class class class)co 7284 ℝcr 10879 0cc0 10880 < clt 11018 / cdiv 11641 2c2 12037 ℝ+crp 12739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-2 12045 df-rp 12740 |
This theorem is referenced by: rpltrp 13084 rpnnen2lem11 15942 sqrt2irr 15967 metcnpi3 23711 cfilucfil 23724 reperflem 23990 iccntr 23993 icccmplem2 23995 reconnlem2 23999 cnllycmp 24128 bcthlem5 24501 minveclem3 24602 ivthlem2 24625 lhop1lem 25186 dvcnvre 25192 aaliou 25507 aaliou2b 25510 cosordlem 25695 tanord1 25702 argregt0 25774 argrege0 25775 isosctrlem1 25977 asinsin 26051 asin1 26053 atan1 26087 lgamucov 26196 lgsqrlem2 26504 lgsquadlem2 26538 lgsquadlem3 26539 2sqlem8 26583 chebbnd1lem2 26627 pntibnd 26750 pntlem3 26766 ubthlem1 29241 nmcexi 30397 ftc1anc 35867 flt4lem7 40503 isosctrlem1ALT 42561 dstregt0 42827 supxrge 42884 rphalfltd 43002 stoweidlem62 43610 fourierdlem79 43733 |
Copyright terms: Public domain | W3C validator |