![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rphalfcl | Structured version Visualization version GIF version |
Description: Closure law for half of a positive real. (Contributed by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
rphalfcl | ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rp 13037 | . 2 ⊢ 2 ∈ ℝ+ | |
2 | rpdivcl 13058 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (𝐴 / 2) ∈ ℝ+) | |
3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 (class class class)co 7431 / cdiv 11918 2c2 12319 ℝ+crp 13032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-2 12327 df-rp 13033 |
This theorem is referenced by: rphalfcld 13087 rpltrp 13380 cau3lem 15390 2clim 15605 addcn2 15627 mulcn2 15629 climcau 15704 metcnpi3 24575 ngptgp 24665 iccntr 24857 reconnlem2 24863 opnreen 24867 xmetdcn2 24873 cnllycmp 25002 iscfil3 25321 cfilfcls 25322 iscmet3lem3 25338 iscmet3lem1 25339 iscmet3lem2 25340 iscmet3 25341 lmcau 25361 bcthlem5 25376 ivthlem2 25501 uniioombl 25638 dvcnvre 26073 aaliou 26395 ulmcaulem 26452 ulmcau 26453 ulmcn 26457 ulmdvlem3 26460 tanregt0 26596 argregt0 26667 argrege0 26668 logimul 26671 resqrtcn 26807 asin1 26952 reasinsin 26954 atanbnd 26984 atan1 26986 sqrtlim 27031 basellem4 27142 chpchtlim 27538 mulog2sumlem2 27594 pntlem3 27668 vacn 30723 ubthlem1 30899 nmcexi 32055 poimirlem29 37636 heicant 37642 ftc1anclem6 37685 ftc1anclem7 37686 ftc1anc 37688 heibor1lem 37796 heiborlem8 37805 bfplem2 37810 supxrge 45288 suplesup 45289 infleinflem1 45320 infleinf 45322 addlimc 45604 fourierdlem103 46165 fourierdlem104 46166 sge0xaddlem2 46390 smflimlem4 46730 |
Copyright terms: Public domain | W3C validator |