Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2106
(class class class)co 7405 / cdiv 11867
2c2 12263 ℝ+crp 12970 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-2 12271
df-rp 12971 |
This theorem is referenced by: rphalfcld
13024 rpltrp
13316 cau3lem
15297 2clim
15512 addcn2
15534 mulcn2
15536 climcau
15613 metcnpi3
24046 ngptgp
24136 iccntr
24328 reconnlem2
24334 opnreen
24338 xmetdcn2
24344 cnllycmp
24463 iscfil3
24781 cfilfcls
24782 iscmet3lem3
24798 iscmet3lem1
24799 iscmet3lem2
24800 iscmet3
24801 lmcau
24821 bcthlem5
24836 ivthlem2
24960 uniioombl
25097 dvcnvre
25527 aaliou
25842 ulmcaulem
25897 ulmcau
25898 ulmcn
25902 ulmdvlem3
25905 tanregt0
26039 argregt0
26109 argrege0
26110 logimul
26113 resqrtcn
26246 asin1
26388 reasinsin
26390 atanbnd
26420 atan1
26422 sqrtlim
26466 basellem4
26577 chpchtlim
26971 mulog2sumlem2
27027 pntlem3
27101 vacn
29934 ubthlem1
30110 nmcexi
31266 poimirlem29
36505 heicant
36511 ftc1anclem6
36554 ftc1anclem7
36555 ftc1anc
36557 heibor1lem
36665 heiborlem8
36674 bfplem2
36679 supxrge
44034 suplesup
44035 infleinflem1
44066 infleinf
44068 addlimc
44350 fourierdlem103
44911 fourierdlem104
44912 sge0xaddlem2
45136 smflimlem4
45476 |