![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rphalfcl | Structured version Visualization version GIF version |
Description: Closure law for half of a positive real. (Contributed by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
rphalfcl | ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rp 13062 | . 2 ⊢ 2 ∈ ℝ+ | |
2 | rpdivcl 13082 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (𝐴 / 2) ∈ ℝ+) | |
3 | 1, 2 | mpan2 690 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7448 / cdiv 11947 2c2 12348 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-2 12356 df-rp 13058 |
This theorem is referenced by: rphalfcld 13111 rpltrp 13403 cau3lem 15403 2clim 15618 addcn2 15640 mulcn2 15642 climcau 15719 metcnpi3 24580 ngptgp 24670 iccntr 24862 reconnlem2 24868 opnreen 24872 xmetdcn2 24878 cnllycmp 25007 iscfil3 25326 cfilfcls 25327 iscmet3lem3 25343 iscmet3lem1 25344 iscmet3lem2 25345 iscmet3 25346 lmcau 25366 bcthlem5 25381 ivthlem2 25506 uniioombl 25643 dvcnvre 26078 aaliou 26398 ulmcaulem 26455 ulmcau 26456 ulmcn 26460 ulmdvlem3 26463 tanregt0 26599 argregt0 26670 argrege0 26671 logimul 26674 resqrtcn 26810 asin1 26955 reasinsin 26957 atanbnd 26987 atan1 26989 sqrtlim 27034 basellem4 27145 chpchtlim 27541 mulog2sumlem2 27597 pntlem3 27671 vacn 30726 ubthlem1 30902 nmcexi 32058 poimirlem29 37609 heicant 37615 ftc1anclem6 37658 ftc1anclem7 37659 ftc1anc 37661 heibor1lem 37769 heiborlem8 37778 bfplem2 37783 supxrge 45253 suplesup 45254 infleinflem1 45285 infleinf 45287 addlimc 45569 fourierdlem103 46130 fourierdlem104 46131 sge0xaddlem2 46355 smflimlem4 46695 |
Copyright terms: Public domain | W3C validator |