Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
(class class class)co 7358 / cdiv 11813
2c2 12209 ℝ+crp 12916 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-div 11814 df-2 12217
df-rp 12917 |
This theorem is referenced by: rphalfcld
12970 rpltrp
13261 cau3lem
15240 2clim
15455 addcn2
15477 mulcn2
15479 climcau
15556 metcnpi3
23905 ngptgp
23995 iccntr
24187 reconnlem2
24193 opnreen
24197 xmetdcn2
24203 cnllycmp
24322 iscfil3
24640 cfilfcls
24641 iscmet3lem3
24657 iscmet3lem1
24658 iscmet3lem2
24659 iscmet3
24660 lmcau
24680 bcthlem5
24695 ivthlem2
24819 uniioombl
24956 dvcnvre
25386 aaliou
25701 ulmcaulem
25756 ulmcau
25757 ulmcn
25761 ulmdvlem3
25764 tanregt0
25898 argregt0
25968 argrege0
25969 logimul
25972 resqrtcn
26105 asin1
26247 reasinsin
26249 atanbnd
26279 atan1
26281 sqrtlim
26325 basellem4
26436 chpchtlim
26830 mulog2sumlem2
26886 pntlem3
26960 vacn
29639 ubthlem1
29815 nmcexi
30971 poimirlem29
36110 heicant
36116 ftc1anclem6
36159 ftc1anclem7
36160 ftc1anc
36162 heibor1lem
36271 heiborlem8
36280 bfplem2
36285 supxrge
43579 suplesup
43580 infleinflem1
43611 infleinf
43613 addlimc
43896 fourierdlem103
44457 fourierdlem104
44458 sge0xaddlem2
44682 smflimlem4
45022 |