![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rphalfcl | Structured version Visualization version GIF version |
Description: Closure law for half of a positive real. (Contributed by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
rphalfcl | ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rp 12248 | . 2 ⊢ 2 ∈ ℝ+ | |
2 | rpdivcl 12268 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (𝐴 / 2) ∈ ℝ+) | |
3 | 1, 2 | mpan2 687 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2083 (class class class)co 7023 / cdiv 11151 2c2 11546 ℝ+crp 12243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-po 5369 df-so 5370 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-div 11152 df-2 11554 df-rp 12244 |
This theorem is referenced by: rphalfcld 12297 rpltrp 12588 cau3lem 14552 2clim 14767 addcn2 14788 mulcn2 14790 climcau 14865 metcnpi3 22843 ngptgp 22932 iccntr 23116 reconnlem2 23122 opnreen 23126 xmetdcn2 23132 cnllycmp 23247 iscfil3 23563 cfilfcls 23564 iscmet3lem3 23580 iscmet3lem1 23581 iscmet3lem2 23582 iscmet3 23583 lmcau 23603 bcthlem5 23618 ivthlem2 23740 uniioombl 23877 dvcnvre 24303 aaliou 24614 ulmcaulem 24669 ulmcau 24670 ulmcn 24674 ulmdvlem3 24677 tanregt0 24808 argregt0 24878 argrege0 24879 logimul 24882 resqrtcn 25015 asin1 25157 reasinsin 25159 atanbnd 25189 atan1 25191 sqrtlim 25236 basellem4 25347 chpchtlim 25741 mulog2sumlem2 25797 pntlem3 25871 vacn 28158 ubthlem1 28334 nmcexi 29490 poimirlem29 34473 heicant 34479 ftc1anclem6 34524 ftc1anclem7 34525 ftc1anc 34527 heibor1lem 34640 heiborlem8 34649 bfplem2 34654 supxrge 41168 suplesup 41169 infleinflem1 41200 infleinf 41202 addlimc 41492 fourierdlem103 42058 fourierdlem104 42059 sge0xaddlem2 42280 smflimlem4 42614 |
Copyright terms: Public domain | W3C validator |