| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rphalfcl | Structured version Visualization version GIF version | ||
| Description: Closure law for half of a positive real. (Contributed by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| rphalfcl | ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rp 12895 | . 2 ⊢ 2 ∈ ℝ+ | |
| 2 | rpdivcl 12917 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (𝐴 / 2) ∈ ℝ+) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 (class class class)co 7346 / cdiv 11774 2c2 12180 ℝ+crp 12890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-2 12188 df-rp 12891 |
| This theorem is referenced by: rphalfcld 12946 rpltrp 13241 cau3lem 15262 2clim 15479 addcn2 15501 mulcn2 15503 climcau 15578 metcnpi3 24461 ngptgp 24551 iccntr 24737 reconnlem2 24743 opnreen 24747 xmetdcn2 24753 cnllycmp 24882 iscfil3 25200 cfilfcls 25201 iscmet3lem3 25217 iscmet3lem1 25218 iscmet3lem2 25219 iscmet3 25220 lmcau 25240 bcthlem5 25255 ivthlem2 25380 uniioombl 25517 dvcnvre 25951 aaliou 26273 ulmcaulem 26330 ulmcau 26331 ulmcn 26335 ulmdvlem3 26338 tanregt0 26475 argregt0 26546 argrege0 26547 logimul 26550 resqrtcn 26686 asin1 26831 reasinsin 26833 atanbnd 26863 atan1 26865 sqrtlim 26910 basellem4 27021 chpchtlim 27417 mulog2sumlem2 27473 pntlem3 27547 vacn 30674 ubthlem1 30850 nmcexi 32006 poimirlem29 37699 heicant 37705 ftc1anclem6 37748 ftc1anclem7 37749 ftc1anc 37751 heibor1lem 37859 heiborlem8 37868 bfplem2 37873 supxrge 45447 suplesup 45448 infleinflem1 45478 infleinf 45480 addlimc 45756 fourierdlem103 46317 fourierdlem104 46318 sge0xaddlem2 46542 smflimlem4 46882 |
| Copyright terms: Public domain | W3C validator |