Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rphalfcl | Structured version Visualization version GIF version |
Description: Closure law for half of a positive real. (Contributed by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
rphalfcl | ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rp 12435 | . 2 ⊢ 2 ∈ ℝ+ | |
2 | rpdivcl 12455 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (𝐴 / 2) ∈ ℝ+) | |
3 | 1, 2 | mpan2 690 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 (class class class)co 7150 / cdiv 11335 2c2 11729 ℝ+crp 12430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-2 11737 df-rp 12431 |
This theorem is referenced by: rphalfcld 12484 rpltrp 12775 cau3lem 14762 2clim 14977 addcn2 14998 mulcn2 15000 climcau 15075 metcnpi3 23248 ngptgp 23338 iccntr 23522 reconnlem2 23528 opnreen 23532 xmetdcn2 23538 cnllycmp 23657 iscfil3 23973 cfilfcls 23974 iscmet3lem3 23990 iscmet3lem1 23991 iscmet3lem2 23992 iscmet3 23993 lmcau 24013 bcthlem5 24028 ivthlem2 24152 uniioombl 24289 dvcnvre 24718 aaliou 25033 ulmcaulem 25088 ulmcau 25089 ulmcn 25093 ulmdvlem3 25096 tanregt0 25230 argregt0 25300 argrege0 25301 logimul 25304 resqrtcn 25437 asin1 25579 reasinsin 25581 atanbnd 25611 atan1 25613 sqrtlim 25657 basellem4 25768 chpchtlim 26162 mulog2sumlem2 26218 pntlem3 26292 vacn 28576 ubthlem1 28752 nmcexi 29908 poimirlem29 35366 heicant 35372 ftc1anclem6 35415 ftc1anclem7 35416 ftc1anc 35418 heibor1lem 35527 heiborlem8 35536 bfplem2 35541 supxrge 42338 suplesup 42339 infleinflem1 42370 infleinf 42372 addlimc 42656 fourierdlem103 43217 fourierdlem104 43218 sge0xaddlem2 43439 smflimlem4 43773 |
Copyright terms: Public domain | W3C validator |