Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2098
(class class class)co 7401 / cdiv 11867
2c2 12263 ℝ+crp 12970 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905
ax-6 1963 ax-7 2003 ax-8 2100
ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions:
df-bi 206 df-an 396
df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-2 12271
df-rp 12971 |
This theorem is referenced by: rphalfcld
13024 rpltrp
13316 cau3lem
15297 2clim
15512 addcn2
15534 mulcn2
15536 climcau
15613 metcnpi3
24365 ngptgp
24455 iccntr
24647 reconnlem2
24653 opnreen
24657 xmetdcn2
24663 cnllycmp
24792 iscfil3
25111 cfilfcls
25112 iscmet3lem3
25128 iscmet3lem1
25129 iscmet3lem2
25130 iscmet3
25131 lmcau
25151 bcthlem5
25166 ivthlem2
25291 uniioombl
25428 dvcnvre
25862 aaliou
26180 ulmcaulem
26235 ulmcau
26236 ulmcn
26240 ulmdvlem3
26243 tanregt0
26378 argregt0
26448 argrege0
26449 logimul
26452 resqrtcn
26588 asin1
26730 reasinsin
26732 atanbnd
26762 atan1
26764 sqrtlim
26809 basellem4
26920 chpchtlim
27316 mulog2sumlem2
27372 pntlem3
27446 vacn
30371 ubthlem1
30547 nmcexi
31703 poimirlem29
36973 heicant
36979 ftc1anclem6
37022 ftc1anclem7
37023 ftc1anc
37025 heibor1lem
37133 heiborlem8
37142 bfplem2
37147 supxrge
44499 suplesup
44500 infleinflem1
44531 infleinf
44533 addlimc
44815 fourierdlem103
45376 fourierdlem104
45377 sge0xaddlem2
45601 smflimlem4
45941 |