| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rphalfcl | Structured version Visualization version GIF version | ||
| Description: Closure law for half of a positive real. (Contributed by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| rphalfcl | ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rp 12963 | . 2 ⊢ 2 ∈ ℝ+ | |
| 2 | rpdivcl 12985 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (𝐴 / 2) ∈ ℝ+) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7390 / cdiv 11842 2c2 12248 ℝ+crp 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-2 12256 df-rp 12959 |
| This theorem is referenced by: rphalfcld 13014 rpltrp 13309 cau3lem 15328 2clim 15545 addcn2 15567 mulcn2 15569 climcau 15644 metcnpi3 24441 ngptgp 24531 iccntr 24717 reconnlem2 24723 opnreen 24727 xmetdcn2 24733 cnllycmp 24862 iscfil3 25180 cfilfcls 25181 iscmet3lem3 25197 iscmet3lem1 25198 iscmet3lem2 25199 iscmet3 25200 lmcau 25220 bcthlem5 25235 ivthlem2 25360 uniioombl 25497 dvcnvre 25931 aaliou 26253 ulmcaulem 26310 ulmcau 26311 ulmcn 26315 ulmdvlem3 26318 tanregt0 26455 argregt0 26526 argrege0 26527 logimul 26530 resqrtcn 26666 asin1 26811 reasinsin 26813 atanbnd 26843 atan1 26845 sqrtlim 26890 basellem4 27001 chpchtlim 27397 mulog2sumlem2 27453 pntlem3 27527 vacn 30630 ubthlem1 30806 nmcexi 31962 poimirlem29 37650 heicant 37656 ftc1anclem6 37699 ftc1anclem7 37700 ftc1anc 37702 heibor1lem 37810 heiborlem8 37819 bfplem2 37824 supxrge 45341 suplesup 45342 infleinflem1 45373 infleinf 45375 addlimc 45653 fourierdlem103 46214 fourierdlem104 46215 sge0xaddlem2 46439 smflimlem4 46779 |
| Copyright terms: Public domain | W3C validator |