Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rphalfcl | Structured version Visualization version GIF version |
Description: Closure law for half of a positive real. (Contributed by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
rphalfcl | ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rp 12664 | . 2 ⊢ 2 ∈ ℝ+ | |
2 | rpdivcl 12684 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (𝐴 / 2) ∈ ℝ+) | |
3 | 1, 2 | mpan2 687 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 (class class class)co 7255 / cdiv 11562 2c2 11958 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-2 11966 df-rp 12660 |
This theorem is referenced by: rphalfcld 12713 rpltrp 13004 cau3lem 14994 2clim 15209 addcn2 15231 mulcn2 15233 climcau 15310 metcnpi3 23608 ngptgp 23698 iccntr 23890 reconnlem2 23896 opnreen 23900 xmetdcn2 23906 cnllycmp 24025 iscfil3 24342 cfilfcls 24343 iscmet3lem3 24359 iscmet3lem1 24360 iscmet3lem2 24361 iscmet3 24362 lmcau 24382 bcthlem5 24397 ivthlem2 24521 uniioombl 24658 dvcnvre 25088 aaliou 25403 ulmcaulem 25458 ulmcau 25459 ulmcn 25463 ulmdvlem3 25466 tanregt0 25600 argregt0 25670 argrege0 25671 logimul 25674 resqrtcn 25807 asin1 25949 reasinsin 25951 atanbnd 25981 atan1 25983 sqrtlim 26027 basellem4 26138 chpchtlim 26532 mulog2sumlem2 26588 pntlem3 26662 vacn 28957 ubthlem1 29133 nmcexi 30289 poimirlem29 35733 heicant 35739 ftc1anclem6 35782 ftc1anclem7 35783 ftc1anc 35785 heibor1lem 35894 heiborlem8 35903 bfplem2 35908 supxrge 42767 suplesup 42768 infleinflem1 42799 infleinf 42801 addlimc 43079 fourierdlem103 43640 fourierdlem104 43641 sge0xaddlem2 43862 smflimlem4 44196 |
Copyright terms: Public domain | W3C validator |