| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rphalfcl | Structured version Visualization version GIF version | ||
| Description: Closure law for half of a positive real. (Contributed by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| rphalfcl | ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rp 12956 | . 2 ⊢ 2 ∈ ℝ+ | |
| 2 | rpdivcl 12978 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 2 ∈ ℝ+) → (𝐴 / 2) ∈ ℝ+) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 (class class class)co 7387 / cdiv 11835 2c2 12241 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-2 12249 df-rp 12952 |
| This theorem is referenced by: rphalfcld 13007 rpltrp 13302 cau3lem 15321 2clim 15538 addcn2 15560 mulcn2 15562 climcau 15637 metcnpi3 24434 ngptgp 24524 iccntr 24710 reconnlem2 24716 opnreen 24720 xmetdcn2 24726 cnllycmp 24855 iscfil3 25173 cfilfcls 25174 iscmet3lem3 25190 iscmet3lem1 25191 iscmet3lem2 25192 iscmet3 25193 lmcau 25213 bcthlem5 25228 ivthlem2 25353 uniioombl 25490 dvcnvre 25924 aaliou 26246 ulmcaulem 26303 ulmcau 26304 ulmcn 26308 ulmdvlem3 26311 tanregt0 26448 argregt0 26519 argrege0 26520 logimul 26523 resqrtcn 26659 asin1 26804 reasinsin 26806 atanbnd 26836 atan1 26838 sqrtlim 26883 basellem4 26994 chpchtlim 27390 mulog2sumlem2 27446 pntlem3 27520 vacn 30623 ubthlem1 30799 nmcexi 31955 poimirlem29 37643 heicant 37649 ftc1anclem6 37692 ftc1anclem7 37693 ftc1anc 37695 heibor1lem 37803 heiborlem8 37812 bfplem2 37817 supxrge 45334 suplesup 45335 infleinflem1 45366 infleinf 45368 addlimc 45646 fourierdlem103 46207 fourierdlem104 46208 sge0xaddlem2 46432 smflimlem4 46772 |
| Copyright terms: Public domain | W3C validator |