Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sgnrrp | Structured version Visualization version GIF version |
Description: The signum of a positive real is 1. (Contributed by David A. Wheeler, 18-May-2015.) |
Ref | Expression |
---|---|
sgnrrp | ⊢ (𝐴 ∈ ℝ+ → (sgn‘𝐴) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpxr 12429 | . 2 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) | |
2 | rpgt0 12432 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
3 | sgnp 14487 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) | |
4 | 1, 2, 3 | syl2anc 588 | 1 ⊢ (𝐴 ∈ ℝ+ → (sgn‘𝐴) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 class class class wbr 5030 ‘cfv 6333 0cc0 10565 1c1 10566 ℝ*cxr 10702 < clt 10703 ℝ+crp 12420 sgncsgn 14483 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-i2m1 10633 ax-rnegex 10636 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-op 4527 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5428 df-po 5441 df-so 5442 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-ov 7151 df-er 8297 df-en 8526 df-dom 8527 df-sdom 8528 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-neg 10901 df-rp 12421 df-sgn 14484 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |