| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slelttrd | Structured version Visualization version GIF version | ||
| Description: Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| slttrd.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| slttrd.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| slttrd.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| slelttrd.4 | ⊢ (𝜑 → 𝐴 ≤s 𝐵) |
| slelttrd.5 | ⊢ (𝜑 → 𝐵 <s 𝐶) |
| Ref | Expression |
|---|---|
| slelttrd | ⊢ (𝜑 → 𝐴 <s 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slelttrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤s 𝐵) | |
| 2 | slelttrd.5 | . 2 ⊢ (𝜑 → 𝐵 <s 𝐶) | |
| 3 | slttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 4 | slttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 5 | slttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 6 | slelttr 27667 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ((𝐴 ≤s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 ≤s 𝐵 ∧ 𝐵 <s 𝐶) → 𝐴 <s 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 <s 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5092 No csur 27549 <s cslt 27550 ≤s csle 27654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-1o 8388 df-2o 8389 df-no 27552 df-slt 27553 df-sle 27655 |
| This theorem is referenced by: slerec 27730 eqscut3 27735 sltlpss 27822 cofsslt 27831 sleadd1 27901 sltmul12ad 28091 absslt 28156 n0sfincut 28251 uzsind 28298 |
| Copyright terms: Public domain | W3C validator |