MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2noseqf1o Structured version   Visualization version   GIF version

Theorem om2noseqf1o 28202
Description: 𝐺 is a bijection. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseq.3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
Assertion
Ref Expression
om2noseqf1o (𝜑𝐺:ω–1-1-onto𝑍)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐺(𝑥)   𝑍(𝑥)

Proof of Theorem om2noseqf1o
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 om2noseq.1 . . . . 5 (𝜑𝐶 No )
2 om2noseq.2 . . . . 5 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
3 om2noseq.3 . . . . 5 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
41, 2, 3om2noseqfo 28199 . . . 4 (𝜑𝐺:ω–onto𝑍)
5 fof 6775 . . . 4 (𝐺:ω–onto𝑍𝐺:ω⟶𝑍)
64, 5syl 17 . . 3 (𝜑𝐺:ω⟶𝑍)
71, 2, 3om2noseqlt 28200 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦𝑧 → (𝐺𝑦) <s (𝐺𝑧)))
81, 2, 3om2noseqlt 28200 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑧𝑦 → (𝐺𝑧) <s (𝐺𝑦)))
98ancom2s 650 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑧𝑦 → (𝐺𝑧) <s (𝐺𝑦)))
107, 9orim12d 966 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝑦𝑧𝑧𝑦) → ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦))))
1110con3d 152 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (¬ ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦)) → ¬ (𝑦𝑧𝑧𝑦)))
123, 1noseqssno 28195 . . . . . . . . 9 (𝜑𝑍 No )
136, 12fssd 6708 . . . . . . . 8 (𝜑𝐺:ω⟶ No )
1413ffvelcdmda 7059 . . . . . . 7 ((𝜑𝑦 ∈ ω) → (𝐺𝑦) ∈ No )
1514adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝐺𝑦) ∈ No )
1613ffvelcdmda 7059 . . . . . . 7 ((𝜑𝑧 ∈ ω) → (𝐺𝑧) ∈ No )
1716adantrl 716 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝐺𝑧) ∈ No )
18 slttrieq2 27669 . . . . . . 7 (((𝐺𝑦) ∈ No ∧ (𝐺𝑧) ∈ No ) → ((𝐺𝑦) = (𝐺𝑧) ↔ (¬ (𝐺𝑦) <s (𝐺𝑧) ∧ ¬ (𝐺𝑧) <s (𝐺𝑦))))
19 ioran 985 . . . . . . 7 (¬ ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦)) ↔ (¬ (𝐺𝑦) <s (𝐺𝑧) ∧ ¬ (𝐺𝑧) <s (𝐺𝑦)))
2018, 19bitr4di 289 . . . . . 6 (((𝐺𝑦) ∈ No ∧ (𝐺𝑧) ∈ No ) → ((𝐺𝑦) = (𝐺𝑧) ↔ ¬ ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦))))
2115, 17, 20syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺𝑦) = (𝐺𝑧) ↔ ¬ ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦))))
22 nnord 7853 . . . . . . 7 (𝑦 ∈ ω → Ord 𝑦)
23 nnord 7853 . . . . . . 7 (𝑧 ∈ ω → Ord 𝑧)
24 ordtri3 6371 . . . . . . 7 ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2522, 23, 24syl2an 596 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2625adantl 481 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2711, 21, 263imtr4d 294 . . . 4 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
2827ralrimivva 3181 . . 3 (𝜑 → ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
29 dff13 7232 . . 3 (𝐺:ω–1-1𝑍 ↔ (𝐺:ω⟶𝑍 ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
306, 28, 29sylanbrc 583 . 2 (𝜑𝐺:ω–1-1𝑍)
31 df-f1o 6521 . 2 (𝐺:ω–1-1-onto𝑍 ↔ (𝐺:ω–1-1𝑍𝐺:ω–onto𝑍))
3230, 4, 31sylanbrc 583 1 (𝜑𝐺:ω–1-1-onto𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450   class class class wbr 5110  cmpt 5191  cres 5643  cima 5644  Ord word 6334  wf 6510  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  ωcom 7845  reccrdg 8380   No csur 27558   <s cslt 27559   1s c1s 27742   +s cadds 27873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec2 27863  df-adds 27874
This theorem is referenced by:  om2noseqiso  28203  noseqrdglem  28206  noseqrdgfn  28207  noseqrdgsuc  28209
  Copyright terms: Public domain W3C validator