| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om2noseqf1o | Structured version Visualization version GIF version | ||
| Description: 𝐺 is a bijection. (Contributed by Scott Fenton, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| om2noseq.1 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| om2noseq.2 | ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) |
| om2noseq.3 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) |
| Ref | Expression |
|---|---|
| om2noseqf1o | ⊢ (𝜑 → 𝐺:ω–1-1-onto→𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2noseq.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 2 | om2noseq.2 | . . . . 5 ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | |
| 3 | om2noseq.3 | . . . . 5 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) | |
| 4 | 1, 2, 3 | om2noseqfo 28192 | . . . 4 ⊢ (𝜑 → 𝐺:ω–onto→𝑍) |
| 5 | fof 6772 | . . . 4 ⊢ (𝐺:ω–onto→𝑍 → 𝐺:ω⟶𝑍) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺:ω⟶𝑍) |
| 7 | 1, 2, 3 | om2noseqlt 28193 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦 ∈ 𝑧 → (𝐺‘𝑦) <s (𝐺‘𝑧))) |
| 8 | 1, 2, 3 | om2noseqlt 28193 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑧 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) <s (𝐺‘𝑦))) |
| 9 | 8 | ancom2s 650 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) <s (𝐺‘𝑦))) |
| 10 | 7, 9 | orim12d 966 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦) → ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)))) |
| 11 | 10 | con3d 152 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (¬ ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)) → ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
| 12 | 3, 1 | noseqssno 28188 | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 ⊆ No ) |
| 13 | 6, 12 | fssd 6705 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:ω⟶ No ) |
| 14 | 13 | ffvelcdmda 7056 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (𝐺‘𝑦) ∈ No ) |
| 15 | 14 | adantrr 717 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝐺‘𝑦) ∈ No ) |
| 16 | 13 | ffvelcdmda 7056 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ω) → (𝐺‘𝑧) ∈ No ) |
| 17 | 16 | adantrl 716 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝐺‘𝑧) ∈ No ) |
| 18 | slttrieq2 27662 | . . . . . . 7 ⊢ (((𝐺‘𝑦) ∈ No ∧ (𝐺‘𝑧) ∈ No ) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ (¬ (𝐺‘𝑦) <s (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) <s (𝐺‘𝑦)))) | |
| 19 | ioran 985 | . . . . . . 7 ⊢ (¬ ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)) ↔ (¬ (𝐺‘𝑦) <s (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) <s (𝐺‘𝑦))) | |
| 20 | 18, 19 | bitr4di 289 | . . . . . 6 ⊢ (((𝐺‘𝑦) ∈ No ∧ (𝐺‘𝑧) ∈ No ) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ ¬ ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)))) |
| 21 | 15, 17, 20 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ ¬ ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)))) |
| 22 | nnord 7850 | . . . . . . 7 ⊢ (𝑦 ∈ ω → Ord 𝑦) | |
| 23 | nnord 7850 | . . . . . . 7 ⊢ (𝑧 ∈ ω → Ord 𝑧) | |
| 24 | ordtri3 6368 | . . . . . . 7 ⊢ ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) | |
| 25 | 22, 23, 24 | syl2an 596 | . . . . . 6 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
| 26 | 25 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
| 27 | 11, 21, 26 | 3imtr4d 294 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) |
| 28 | 27 | ralrimivva 3180 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) |
| 29 | dff13 7229 | . . 3 ⊢ (𝐺:ω–1-1→𝑍 ↔ (𝐺:ω⟶𝑍 ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))) | |
| 30 | 6, 28, 29 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐺:ω–1-1→𝑍) |
| 31 | df-f1o 6518 | . 2 ⊢ (𝐺:ω–1-1-onto→𝑍 ↔ (𝐺:ω–1-1→𝑍 ∧ 𝐺:ω–onto→𝑍)) | |
| 32 | 30, 4, 31 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐺:ω–1-1-onto→𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 class class class wbr 5107 ↦ cmpt 5188 ↾ cres 5640 “ cima 5641 Ord word 6331 ⟶wf 6507 –1-1→wf1 6508 –onto→wfo 6509 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 ωcom 7842 reccrdg 8377 No csur 27551 <s cslt 27552 1s c1s 27735 +s cadds 27866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-nadd 8630 df-no 27554 df-slt 27555 df-bday 27556 df-sle 27657 df-sslt 27693 df-scut 27695 df-0s 27736 df-1s 27737 df-made 27755 df-old 27756 df-left 27758 df-right 27759 df-norec2 27856 df-adds 27867 |
| This theorem is referenced by: om2noseqiso 28196 noseqrdglem 28199 noseqrdgfn 28200 noseqrdgsuc 28202 |
| Copyright terms: Public domain | W3C validator |