MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2noseqf1o Structured version   Visualization version   GIF version

Theorem om2noseqf1o 28307
Description: 𝐺 is a bijection. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseq.3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
Assertion
Ref Expression
om2noseqf1o (𝜑𝐺:ω–1-1-onto𝑍)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐺(𝑥)   𝑍(𝑥)

Proof of Theorem om2noseqf1o
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 om2noseq.1 . . . . 5 (𝜑𝐶 No )
2 om2noseq.2 . . . . 5 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
3 om2noseq.3 . . . . 5 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
41, 2, 3om2noseqfo 28304 . . . 4 (𝜑𝐺:ω–onto𝑍)
5 fof 6820 . . . 4 (𝐺:ω–onto𝑍𝐺:ω⟶𝑍)
64, 5syl 17 . . 3 (𝜑𝐺:ω⟶𝑍)
71, 2, 3om2noseqlt 28305 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦𝑧 → (𝐺𝑦) <s (𝐺𝑧)))
81, 2, 3om2noseqlt 28305 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑧𝑦 → (𝐺𝑧) <s (𝐺𝑦)))
98ancom2s 650 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑧𝑦 → (𝐺𝑧) <s (𝐺𝑦)))
107, 9orim12d 967 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝑦𝑧𝑧𝑦) → ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦))))
1110con3d 152 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (¬ ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦)) → ¬ (𝑦𝑧𝑧𝑦)))
123, 1noseqssno 28300 . . . . . . . . 9 (𝜑𝑍 No )
136, 12fssd 6753 . . . . . . . 8 (𝜑𝐺:ω⟶ No )
1413ffvelcdmda 7104 . . . . . . 7 ((𝜑𝑦 ∈ ω) → (𝐺𝑦) ∈ No )
1514adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝐺𝑦) ∈ No )
1613ffvelcdmda 7104 . . . . . . 7 ((𝜑𝑧 ∈ ω) → (𝐺𝑧) ∈ No )
1716adantrl 716 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝐺𝑧) ∈ No )
18 slttrieq2 27795 . . . . . . 7 (((𝐺𝑦) ∈ No ∧ (𝐺𝑧) ∈ No ) → ((𝐺𝑦) = (𝐺𝑧) ↔ (¬ (𝐺𝑦) <s (𝐺𝑧) ∧ ¬ (𝐺𝑧) <s (𝐺𝑦))))
19 ioran 986 . . . . . . 7 (¬ ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦)) ↔ (¬ (𝐺𝑦) <s (𝐺𝑧) ∧ ¬ (𝐺𝑧) <s (𝐺𝑦)))
2018, 19bitr4di 289 . . . . . 6 (((𝐺𝑦) ∈ No ∧ (𝐺𝑧) ∈ No ) → ((𝐺𝑦) = (𝐺𝑧) ↔ ¬ ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦))))
2115, 17, 20syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺𝑦) = (𝐺𝑧) ↔ ¬ ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦))))
22 nnord 7895 . . . . . . 7 (𝑦 ∈ ω → Ord 𝑦)
23 nnord 7895 . . . . . . 7 (𝑧 ∈ ω → Ord 𝑧)
24 ordtri3 6420 . . . . . . 7 ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2522, 23, 24syl2an 596 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2625adantl 481 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2711, 21, 263imtr4d 294 . . . 4 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
2827ralrimivva 3202 . . 3 (𝜑 → ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
29 dff13 7275 . . 3 (𝐺:ω–1-1𝑍 ↔ (𝐺:ω⟶𝑍 ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
306, 28, 29sylanbrc 583 . 2 (𝜑𝐺:ω–1-1𝑍)
31 df-f1o 6568 . 2 (𝐺:ω–1-1-onto𝑍 ↔ (𝐺:ω–1-1𝑍𝐺:ω–onto𝑍))
3230, 4, 31sylanbrc 583 1 (𝜑𝐺:ω–1-1-onto𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480   class class class wbr 5143  cmpt 5225  cres 5687  cima 5688  Ord word 6383  wf 6557  1-1wf1 6558  ontowfo 6559  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  ωcom 7887  reccrdg 8449   No csur 27684   <s cslt 27685   1s c1s 27868   +s cadds 27992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-nadd 8704  df-no 27687  df-slt 27688  df-bday 27689  df-sle 27790  df-sslt 27826  df-scut 27828  df-0s 27869  df-1s 27870  df-made 27886  df-old 27887  df-left 27889  df-right 27890  df-norec2 27982  df-adds 27993
This theorem is referenced by:  om2noseqiso  28308  noseqrdglem  28311  noseqrdgfn  28312  noseqrdgsuc  28314
  Copyright terms: Public domain W3C validator