![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om2noseqf1o | Structured version Visualization version GIF version |
Description: 𝐺 is a bijection. (Contributed by Scott Fenton, 18-Apr-2025.) |
Ref | Expression |
---|---|
om2noseq.1 | ⊢ (𝜑 → 𝐶 ∈ No ) |
om2noseq.2 | ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) |
om2noseq.3 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) |
Ref | Expression |
---|---|
om2noseqf1o | ⊢ (𝜑 → 𝐺:ω–1-1-onto→𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2noseq.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ No ) | |
2 | om2noseq.2 | . . . . 5 ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | |
3 | om2noseq.3 | . . . . 5 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) | |
4 | 1, 2, 3 | om2noseqfo 28272 | . . . 4 ⊢ (𝜑 → 𝐺:ω–onto→𝑍) |
5 | fof 6815 | . . . 4 ⊢ (𝐺:ω–onto→𝑍 → 𝐺:ω⟶𝑍) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺:ω⟶𝑍) |
7 | 1, 2, 3 | om2noseqlt 28273 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦 ∈ 𝑧 → (𝐺‘𝑦) <s (𝐺‘𝑧))) |
8 | 1, 2, 3 | om2noseqlt 28273 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑧 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) <s (𝐺‘𝑦))) |
9 | 8 | ancom2s 648 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) <s (𝐺‘𝑦))) |
10 | 7, 9 | orim12d 962 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦) → ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)))) |
11 | 10 | con3d 152 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (¬ ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)) → ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
12 | 3, 1 | noseqssno 28268 | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 ⊆ No ) |
13 | 6, 12 | fssd 6745 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:ω⟶ No ) |
14 | 13 | ffvelcdmda 7098 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (𝐺‘𝑦) ∈ No ) |
15 | 14 | adantrr 715 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝐺‘𝑦) ∈ No ) |
16 | 13 | ffvelcdmda 7098 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ω) → (𝐺‘𝑧) ∈ No ) |
17 | 16 | adantrl 714 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝐺‘𝑧) ∈ No ) |
18 | slttrieq2 27780 | . . . . . . 7 ⊢ (((𝐺‘𝑦) ∈ No ∧ (𝐺‘𝑧) ∈ No ) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ (¬ (𝐺‘𝑦) <s (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) <s (𝐺‘𝑦)))) | |
19 | ioran 981 | . . . . . . 7 ⊢ (¬ ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)) ↔ (¬ (𝐺‘𝑦) <s (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) <s (𝐺‘𝑦))) | |
20 | 18, 19 | bitr4di 288 | . . . . . 6 ⊢ (((𝐺‘𝑦) ∈ No ∧ (𝐺‘𝑧) ∈ No ) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ ¬ ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)))) |
21 | 15, 17, 20 | syl2anc 582 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ ¬ ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)))) |
22 | nnord 7884 | . . . . . . 7 ⊢ (𝑦 ∈ ω → Ord 𝑦) | |
23 | nnord 7884 | . . . . . . 7 ⊢ (𝑧 ∈ ω → Ord 𝑧) | |
24 | ordtri3 6412 | . . . . . . 7 ⊢ ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) | |
25 | 22, 23, 24 | syl2an 594 | . . . . . 6 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
26 | 25 | adantl 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
27 | 11, 21, 26 | 3imtr4d 293 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) |
28 | 27 | ralrimivva 3191 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) |
29 | dff13 7270 | . . 3 ⊢ (𝐺:ω–1-1→𝑍 ↔ (𝐺:ω⟶𝑍 ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))) | |
30 | 6, 28, 29 | sylanbrc 581 | . 2 ⊢ (𝜑 → 𝐺:ω–1-1→𝑍) |
31 | df-f1o 6561 | . 2 ⊢ (𝐺:ω–1-1-onto→𝑍 ↔ (𝐺:ω–1-1→𝑍 ∧ 𝐺:ω–onto→𝑍)) | |
32 | 30, 4, 31 | sylanbrc 581 | 1 ⊢ (𝜑 → 𝐺:ω–1-1-onto→𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1534 ∈ wcel 2099 ∀wral 3051 Vcvv 3462 class class class wbr 5153 ↦ cmpt 5236 ↾ cres 5684 “ cima 5685 Ord word 6375 ⟶wf 6550 –1-1→wf1 6551 –onto→wfo 6552 –1-1-onto→wf1o 6553 ‘cfv 6554 (class class class)co 7424 ωcom 7876 reccrdg 8439 No csur 27669 <s cslt 27670 1s c1s 27853 +s cadds 27973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-ot 4642 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-oadd 8500 df-nadd 8696 df-no 27672 df-slt 27673 df-bday 27674 df-sle 27775 df-sslt 27811 df-scut 27813 df-0s 27854 df-1s 27855 df-made 27871 df-old 27872 df-left 27874 df-right 27875 df-norec2 27963 df-adds 27974 |
This theorem is referenced by: om2noseqiso 28276 noseqrdglem 28279 noseqrdgfn 28280 noseqrdgsuc 28282 |
Copyright terms: Public domain | W3C validator |