MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2noseqf1o Structured version   Visualization version   GIF version

Theorem om2noseqf1o 28275
Description: 𝐺 is a bijection. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseq.3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
Assertion
Ref Expression
om2noseqf1o (𝜑𝐺:ω–1-1-onto𝑍)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐺(𝑥)   𝑍(𝑥)

Proof of Theorem om2noseqf1o
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 om2noseq.1 . . . . 5 (𝜑𝐶 No )
2 om2noseq.2 . . . . 5 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
3 om2noseq.3 . . . . 5 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
41, 2, 3om2noseqfo 28272 . . . 4 (𝜑𝐺:ω–onto𝑍)
5 fof 6815 . . . 4 (𝐺:ω–onto𝑍𝐺:ω⟶𝑍)
64, 5syl 17 . . 3 (𝜑𝐺:ω⟶𝑍)
71, 2, 3om2noseqlt 28273 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦𝑧 → (𝐺𝑦) <s (𝐺𝑧)))
81, 2, 3om2noseqlt 28273 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑧𝑦 → (𝐺𝑧) <s (𝐺𝑦)))
98ancom2s 648 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑧𝑦 → (𝐺𝑧) <s (𝐺𝑦)))
107, 9orim12d 962 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝑦𝑧𝑧𝑦) → ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦))))
1110con3d 152 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (¬ ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦)) → ¬ (𝑦𝑧𝑧𝑦)))
123, 1noseqssno 28268 . . . . . . . . 9 (𝜑𝑍 No )
136, 12fssd 6745 . . . . . . . 8 (𝜑𝐺:ω⟶ No )
1413ffvelcdmda 7098 . . . . . . 7 ((𝜑𝑦 ∈ ω) → (𝐺𝑦) ∈ No )
1514adantrr 715 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝐺𝑦) ∈ No )
1613ffvelcdmda 7098 . . . . . . 7 ((𝜑𝑧 ∈ ω) → (𝐺𝑧) ∈ No )
1716adantrl 714 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝐺𝑧) ∈ No )
18 slttrieq2 27780 . . . . . . 7 (((𝐺𝑦) ∈ No ∧ (𝐺𝑧) ∈ No ) → ((𝐺𝑦) = (𝐺𝑧) ↔ (¬ (𝐺𝑦) <s (𝐺𝑧) ∧ ¬ (𝐺𝑧) <s (𝐺𝑦))))
19 ioran 981 . . . . . . 7 (¬ ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦)) ↔ (¬ (𝐺𝑦) <s (𝐺𝑧) ∧ ¬ (𝐺𝑧) <s (𝐺𝑦)))
2018, 19bitr4di 288 . . . . . 6 (((𝐺𝑦) ∈ No ∧ (𝐺𝑧) ∈ No ) → ((𝐺𝑦) = (𝐺𝑧) ↔ ¬ ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦))))
2115, 17, 20syl2anc 582 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺𝑦) = (𝐺𝑧) ↔ ¬ ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦))))
22 nnord 7884 . . . . . . 7 (𝑦 ∈ ω → Ord 𝑦)
23 nnord 7884 . . . . . . 7 (𝑧 ∈ ω → Ord 𝑧)
24 ordtri3 6412 . . . . . . 7 ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2522, 23, 24syl2an 594 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2625adantl 480 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2711, 21, 263imtr4d 293 . . . 4 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
2827ralrimivva 3191 . . 3 (𝜑 → ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
29 dff13 7270 . . 3 (𝐺:ω–1-1𝑍 ↔ (𝐺:ω⟶𝑍 ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
306, 28, 29sylanbrc 581 . 2 (𝜑𝐺:ω–1-1𝑍)
31 df-f1o 6561 . 2 (𝐺:ω–1-1-onto𝑍 ↔ (𝐺:ω–1-1𝑍𝐺:ω–onto𝑍))
3230, 4, 31sylanbrc 581 1 (𝜑𝐺:ω–1-1-onto𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845   = wceq 1534  wcel 2099  wral 3051  Vcvv 3462   class class class wbr 5153  cmpt 5236  cres 5684  cima 5685  Ord word 6375  wf 6550  1-1wf1 6551  ontowfo 6552  1-1-ontowf1o 6553  cfv 6554  (class class class)co 7424  ωcom 7876  reccrdg 8439   No csur 27669   <s cslt 27670   1s c1s 27853   +s cadds 27973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-ot 4642  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-nadd 8696  df-no 27672  df-slt 27673  df-bday 27674  df-sle 27775  df-sslt 27811  df-scut 27813  df-0s 27854  df-1s 27855  df-made 27871  df-old 27872  df-left 27874  df-right 27875  df-norec2 27963  df-adds 27974
This theorem is referenced by:  om2noseqiso  28276  noseqrdglem  28279  noseqrdgfn  28280  noseqrdgsuc  28282
  Copyright terms: Public domain W3C validator