| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om2noseqf1o | Structured version Visualization version GIF version | ||
| Description: 𝐺 is a bijection. (Contributed by Scott Fenton, 18-Apr-2025.) |
| Ref | Expression |
|---|---|
| om2noseq.1 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| om2noseq.2 | ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) |
| om2noseq.3 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) |
| Ref | Expression |
|---|---|
| om2noseqf1o | ⊢ (𝜑 → 𝐺:ω–1-1-onto→𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2noseq.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 2 | om2noseq.2 | . . . . 5 ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | |
| 3 | om2noseq.3 | . . . . 5 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) | |
| 4 | 1, 2, 3 | om2noseqfo 28232 | . . . 4 ⊢ (𝜑 → 𝐺:ω–onto→𝑍) |
| 5 | fof 6754 | . . . 4 ⊢ (𝐺:ω–onto→𝑍 → 𝐺:ω⟶𝑍) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺:ω⟶𝑍) |
| 7 | 1, 2, 3 | om2noseqlt 28233 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦 ∈ 𝑧 → (𝐺‘𝑦) <s (𝐺‘𝑧))) |
| 8 | 1, 2, 3 | om2noseqlt 28233 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑧 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) <s (𝐺‘𝑦))) |
| 9 | 8 | ancom2s 650 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) <s (𝐺‘𝑦))) |
| 10 | 7, 9 | orim12d 966 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦) → ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)))) |
| 11 | 10 | con3d 152 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (¬ ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)) → ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
| 12 | 3, 1 | noseqssno 28228 | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 ⊆ No ) |
| 13 | 6, 12 | fssd 6687 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:ω⟶ No ) |
| 14 | 13 | ffvelcdmda 7038 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (𝐺‘𝑦) ∈ No ) |
| 15 | 14 | adantrr 717 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝐺‘𝑦) ∈ No ) |
| 16 | 13 | ffvelcdmda 7038 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ω) → (𝐺‘𝑧) ∈ No ) |
| 17 | 16 | adantrl 716 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝐺‘𝑧) ∈ No ) |
| 18 | slttrieq2 27695 | . . . . . . 7 ⊢ (((𝐺‘𝑦) ∈ No ∧ (𝐺‘𝑧) ∈ No ) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ (¬ (𝐺‘𝑦) <s (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) <s (𝐺‘𝑦)))) | |
| 19 | ioran 985 | . . . . . . 7 ⊢ (¬ ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)) ↔ (¬ (𝐺‘𝑦) <s (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) <s (𝐺‘𝑦))) | |
| 20 | 18, 19 | bitr4di 289 | . . . . . 6 ⊢ (((𝐺‘𝑦) ∈ No ∧ (𝐺‘𝑧) ∈ No ) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ ¬ ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)))) |
| 21 | 15, 17, 20 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ ¬ ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)))) |
| 22 | nnord 7830 | . . . . . . 7 ⊢ (𝑦 ∈ ω → Ord 𝑦) | |
| 23 | nnord 7830 | . . . . . . 7 ⊢ (𝑧 ∈ ω → Ord 𝑧) | |
| 24 | ordtri3 6356 | . . . . . . 7 ⊢ ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) | |
| 25 | 22, 23, 24 | syl2an 596 | . . . . . 6 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
| 26 | 25 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
| 27 | 11, 21, 26 | 3imtr4d 294 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) |
| 28 | 27 | ralrimivva 3178 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) |
| 29 | dff13 7211 | . . 3 ⊢ (𝐺:ω–1-1→𝑍 ↔ (𝐺:ω⟶𝑍 ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))) | |
| 30 | 6, 28, 29 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐺:ω–1-1→𝑍) |
| 31 | df-f1o 6506 | . 2 ⊢ (𝐺:ω–1-1-onto→𝑍 ↔ (𝐺:ω–1-1→𝑍 ∧ 𝐺:ω–onto→𝑍)) | |
| 32 | 30, 4, 31 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐺:ω–1-1-onto→𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 class class class wbr 5102 ↦ cmpt 5183 ↾ cres 5633 “ cima 5634 Ord word 6319 ⟶wf 6495 –1-1→wf1 6496 –onto→wfo 6497 –1-1-onto→wf1o 6498 ‘cfv 6499 (class class class)co 7369 ωcom 7822 reccrdg 8354 No csur 27584 <s cslt 27585 1s c1s 27772 +s cadds 27906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-nadd 8607 df-no 27587 df-slt 27588 df-bday 27589 df-sle 27690 df-sslt 27727 df-scut 27729 df-0s 27773 df-1s 27774 df-made 27792 df-old 27793 df-left 27795 df-right 27796 df-norec2 27896 df-adds 27907 |
| This theorem is referenced by: om2noseqiso 28236 noseqrdglem 28239 noseqrdgfn 28240 noseqrdgsuc 28242 |
| Copyright terms: Public domain | W3C validator |