MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om2noseqf1o Structured version   Visualization version   GIF version

Theorem om2noseqf1o 28200
Description: 𝐺 is a bijection. (Contributed by Scott Fenton, 18-Apr-2025.)
Hypotheses
Ref Expression
om2noseq.1 (𝜑𝐶 No )
om2noseq.2 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
om2noseq.3 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
Assertion
Ref Expression
om2noseqf1o (𝜑𝐺:ω–1-1-onto𝑍)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐺(𝑥)   𝑍(𝑥)

Proof of Theorem om2noseqf1o
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 om2noseq.1 . . . . 5 (𝜑𝐶 No )
2 om2noseq.2 . . . . 5 (𝜑𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω))
3 om2noseq.3 . . . . 5 (𝜑𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω))
41, 2, 3om2noseqfo 28197 . . . 4 (𝜑𝐺:ω–onto𝑍)
5 fof 6736 . . . 4 (𝐺:ω–onto𝑍𝐺:ω⟶𝑍)
64, 5syl 17 . . 3 (𝜑𝐺:ω⟶𝑍)
71, 2, 3om2noseqlt 28198 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦𝑧 → (𝐺𝑦) <s (𝐺𝑧)))
81, 2, 3om2noseqlt 28198 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑧𝑦 → (𝐺𝑧) <s (𝐺𝑦)))
98ancom2s 650 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑧𝑦 → (𝐺𝑧) <s (𝐺𝑦)))
107, 9orim12d 966 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝑦𝑧𝑧𝑦) → ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦))))
1110con3d 152 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (¬ ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦)) → ¬ (𝑦𝑧𝑧𝑦)))
123, 1noseqssno 28193 . . . . . . . . 9 (𝜑𝑍 No )
136, 12fssd 6669 . . . . . . . 8 (𝜑𝐺:ω⟶ No )
1413ffvelcdmda 7018 . . . . . . 7 ((𝜑𝑦 ∈ ω) → (𝐺𝑦) ∈ No )
1514adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝐺𝑦) ∈ No )
1613ffvelcdmda 7018 . . . . . . 7 ((𝜑𝑧 ∈ ω) → (𝐺𝑧) ∈ No )
1716adantrl 716 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝐺𝑧) ∈ No )
18 slttrieq2 27660 . . . . . . 7 (((𝐺𝑦) ∈ No ∧ (𝐺𝑧) ∈ No ) → ((𝐺𝑦) = (𝐺𝑧) ↔ (¬ (𝐺𝑦) <s (𝐺𝑧) ∧ ¬ (𝐺𝑧) <s (𝐺𝑦))))
19 ioran 985 . . . . . . 7 (¬ ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦)) ↔ (¬ (𝐺𝑦) <s (𝐺𝑧) ∧ ¬ (𝐺𝑧) <s (𝐺𝑦)))
2018, 19bitr4di 289 . . . . . 6 (((𝐺𝑦) ∈ No ∧ (𝐺𝑧) ∈ No ) → ((𝐺𝑦) = (𝐺𝑧) ↔ ¬ ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦))))
2115, 17, 20syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺𝑦) = (𝐺𝑧) ↔ ¬ ((𝐺𝑦) <s (𝐺𝑧) ∨ (𝐺𝑧) <s (𝐺𝑦))))
22 nnord 7807 . . . . . . 7 (𝑦 ∈ ω → Ord 𝑦)
23 nnord 7807 . . . . . . 7 (𝑧 ∈ ω → Ord 𝑧)
24 ordtri3 6343 . . . . . . 7 ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2522, 23, 24syl2an 596 . . . . . 6 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2625adantl 481 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
2711, 21, 263imtr4d 294 . . . 4 ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
2827ralrimivva 3172 . . 3 (𝜑 → ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
29 dff13 7191 . . 3 (𝐺:ω–1-1𝑍 ↔ (𝐺:ω⟶𝑍 ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
306, 28, 29sylanbrc 583 . 2 (𝜑𝐺:ω–1-1𝑍)
31 df-f1o 6489 . 2 (𝐺:ω–1-1-onto𝑍 ↔ (𝐺:ω–1-1𝑍𝐺:ω–onto𝑍))
3230, 4, 31sylanbrc 583 1 (𝜑𝐺:ω–1-1-onto𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436   class class class wbr 5092  cmpt 5173  cres 5621  cima 5622  Ord word 6306  wf 6478  1-1wf1 6479  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  ωcom 7799  reccrdg 8331   No csur 27549   <s cslt 27550   1s c1s 27737   +s cadds 27871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-nadd 8584  df-no 27552  df-slt 27553  df-bday 27554  df-sle 27655  df-sslt 27692  df-scut 27694  df-0s 27738  df-1s 27739  df-made 27757  df-old 27758  df-left 27760  df-right 27761  df-norec2 27861  df-adds 27872
This theorem is referenced by:  om2noseqiso  28201  noseqrdglem  28204  noseqrdgfn  28205  noseqrdgsuc  28207
  Copyright terms: Public domain W3C validator