![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om2noseqf1o | Structured version Visualization version GIF version |
Description: 𝐺 is a bijection. (Contributed by Scott Fenton, 18-Apr-2025.) |
Ref | Expression |
---|---|
om2noseq.1 | ⊢ (𝜑 → 𝐶 ∈ No ) |
om2noseq.2 | ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) |
om2noseq.3 | ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) |
Ref | Expression |
---|---|
om2noseqf1o | ⊢ (𝜑 → 𝐺:ω–1-1-onto→𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2noseq.1 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ No ) | |
2 | om2noseq.2 | . . . . 5 ⊢ (𝜑 → 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) ↾ ω)) | |
3 | om2noseq.3 | . . . . 5 ⊢ (𝜑 → 𝑍 = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 𝐶) “ ω)) | |
4 | 1, 2, 3 | om2noseqfo 28322 | . . . 4 ⊢ (𝜑 → 𝐺:ω–onto→𝑍) |
5 | fof 6834 | . . . 4 ⊢ (𝐺:ω–onto→𝑍 → 𝐺:ω⟶𝑍) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺:ω⟶𝑍) |
7 | 1, 2, 3 | om2noseqlt 28323 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦 ∈ 𝑧 → (𝐺‘𝑦) <s (𝐺‘𝑧))) |
8 | 1, 2, 3 | om2noseqlt 28323 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑧 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) <s (𝐺‘𝑦))) |
9 | 8 | ancom2s 649 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑧 ∈ 𝑦 → (𝐺‘𝑧) <s (𝐺‘𝑦))) |
10 | 7, 9 | orim12d 965 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦) → ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)))) |
11 | 10 | con3d 152 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (¬ ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)) → ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
12 | 3, 1 | noseqssno 28318 | . . . . . . . . 9 ⊢ (𝜑 → 𝑍 ⊆ No ) |
13 | 6, 12 | fssd 6764 | . . . . . . . 8 ⊢ (𝜑 → 𝐺:ω⟶ No ) |
14 | 13 | ffvelcdmda 7118 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑦 ∈ ω) → (𝐺‘𝑦) ∈ No ) |
15 | 14 | adantrr 716 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝐺‘𝑦) ∈ No ) |
16 | 13 | ffvelcdmda 7118 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ω) → (𝐺‘𝑧) ∈ No ) |
17 | 16 | adantrl 715 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝐺‘𝑧) ∈ No ) |
18 | slttrieq2 27813 | . . . . . . 7 ⊢ (((𝐺‘𝑦) ∈ No ∧ (𝐺‘𝑧) ∈ No ) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ (¬ (𝐺‘𝑦) <s (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) <s (𝐺‘𝑦)))) | |
19 | ioran 984 | . . . . . . 7 ⊢ (¬ ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)) ↔ (¬ (𝐺‘𝑦) <s (𝐺‘𝑧) ∧ ¬ (𝐺‘𝑧) <s (𝐺‘𝑦))) | |
20 | 18, 19 | bitr4di 289 | . . . . . 6 ⊢ (((𝐺‘𝑦) ∈ No ∧ (𝐺‘𝑧) ∈ No ) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ ¬ ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)))) |
21 | 15, 17, 20 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ ¬ ((𝐺‘𝑦) <s (𝐺‘𝑧) ∨ (𝐺‘𝑧) <s (𝐺‘𝑦)))) |
22 | nnord 7911 | . . . . . . 7 ⊢ (𝑦 ∈ ω → Ord 𝑦) | |
23 | nnord 7911 | . . . . . . 7 ⊢ (𝑧 ∈ ω → Ord 𝑧) | |
24 | ordtri3 6431 | . . . . . . 7 ⊢ ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) | |
25 | 22, 23, 24 | syl2an 595 | . . . . . 6 ⊢ ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
26 | 25 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦 = 𝑧 ↔ ¬ (𝑦 ∈ 𝑧 ∨ 𝑧 ∈ 𝑦))) |
27 | 11, 21, 26 | 3imtr4d 294 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) |
28 | 27 | ralrimivva 3208 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) |
29 | dff13 7292 | . . 3 ⊢ (𝐺:ω–1-1→𝑍 ↔ (𝐺:ω⟶𝑍 ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))) | |
30 | 6, 28, 29 | sylanbrc 582 | . 2 ⊢ (𝜑 → 𝐺:ω–1-1→𝑍) |
31 | df-f1o 6580 | . 2 ⊢ (𝐺:ω–1-1-onto→𝑍 ↔ (𝐺:ω–1-1→𝑍 ∧ 𝐺:ω–onto→𝑍)) | |
32 | 30, 4, 31 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐺:ω–1-1-onto→𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 class class class wbr 5166 ↦ cmpt 5249 ↾ cres 5702 “ cima 5703 Ord word 6394 ⟶wf 6569 –1-1→wf1 6570 –onto→wfo 6571 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 ωcom 7903 reccrdg 8465 No csur 27702 <s cslt 27703 1s c1s 27886 +s cadds 28010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-nadd 8722 df-no 27705 df-slt 27706 df-bday 27707 df-sle 27808 df-sslt 27844 df-scut 27846 df-0s 27887 df-1s 27888 df-made 27904 df-old 27905 df-left 27907 df-right 27908 df-norec2 28000 df-adds 28011 |
This theorem is referenced by: om2noseqiso 28326 noseqrdglem 28329 noseqrdgfn 28330 noseqrdgsuc 28332 |
Copyright terms: Public domain | W3C validator |