Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smffmpt Structured version   Visualization version   GIF version

Theorem smffmpt 46761
Description: A function measurable w.r.t. to a sigma-algebra, is actually a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smffmpt.x 𝑥𝜑
smffmpt.s (𝜑𝑆 ∈ SAlg)
smffmpt.b ((𝜑𝑥𝐴) → 𝐵𝑉)
smffmpt.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
Assertion
Ref Expression
smffmpt (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smffmpt
StepHypRef Expression
1 smffmpt.x . 2 𝑥𝜑
2 nfcv 2903 . 2 𝑥𝐴
3 smffmpt.s . 2 (𝜑𝑆 ∈ SAlg)
4 smffmpt.b . 2 ((𝜑𝑥𝐴) → 𝐵𝑉)
5 smffmpt.m . 2 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
61, 2, 3, 4, 5smffmptf 46760 1 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1780  wcel 2106  cmpt 5231  wf 6559  cfv 6563  cr 11152  SAlgcsalg 46264  SMblFncsmblfn 46651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-ioo 13388  df-ico 13390  df-smblfn 46652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator