MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltp1i Structured version   Visualization version   GIF version

Theorem ltp1i 12035
Description: A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.)
Hypothesis
Ref Expression
ltplus1.1 𝐴 ∈ ℝ
Assertion
Ref Expression
ltp1i 𝐴 < (𝐴 + 1)

Proof of Theorem ltp1i
StepHypRef Expression
1 ltplus1.1 . 2 𝐴 ∈ ℝ
2 ltp1 11970 . 2 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
31, 2ax-mp 5 1 𝐴 < (𝐴 + 1)
Colors of variables: wff setvar class
Syntax hints:  wcel 2113   class class class wbr 5095  (class class class)co 7354  cr 11014  1c1 11016   + caddc 11018   < clt 11155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356
This theorem is referenced by:  ledivp1i  12056  ltdivp1i  12057  1lt2  12300  2lt3  12301  3lt4  12303  4lt5  12306  5lt6  12310  6lt7  12315  7lt8  12321  8lt9  12328  9lt10  12727  faclbnd4lem1  14204  axlowdimlem16  28939  poimirlem16  37699  poimirlem17  37700  poimirlem19  37702  poimirlem20  37703  fdc  37808  pellqrex  42999
  Copyright terms: Public domain W3C validator