MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivp1 Structured version   Visualization version   GIF version

Theorem ledivp1 12092
Description: "Less than or equal to" and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 28-Sep-2005.)
Assertion
Ref Expression
ledivp1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ 𝐴)

Proof of Theorem ledivp1
StepHypRef Expression
1 simprl 770 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ)
2 peano2re 11354 . . . 4 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
32ad2antrl 728 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 + 1) ∈ ℝ)
4 simpll 766 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ)
5 ltp1 12029 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 < (𝐵 + 1))
6 0re 11183 . . . . . . . . . . 11 0 ∈ ℝ
7 lelttr 11271 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((0 ≤ 𝐵𝐵 < (𝐵 + 1)) → 0 < (𝐵 + 1)))
86, 7mp3an1 1450 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((0 ≤ 𝐵𝐵 < (𝐵 + 1)) → 0 < (𝐵 + 1)))
92, 8mpdan 687 . . . . . . . . 9 (𝐵 ∈ ℝ → ((0 ≤ 𝐵𝐵 < (𝐵 + 1)) → 0 < (𝐵 + 1)))
105, 9mpan2d 694 . . . . . . . 8 (𝐵 ∈ ℝ → (0 ≤ 𝐵 → 0 < (𝐵 + 1)))
1110imp 406 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → 0 < (𝐵 + 1))
1211gt0ne0d 11749 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (𝐵 + 1) ≠ 0)
1312adantl 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 + 1) ≠ 0)
144, 3, 13redivcld 12017 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 / (𝐵 + 1)) ∈ ℝ)
152adantr 480 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (𝐵 + 1) ∈ ℝ)
1615, 11jca 511 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐵 + 1) ∈ ℝ ∧ 0 < (𝐵 + 1)))
17 divge0 12059 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ((𝐵 + 1) ∈ ℝ ∧ 0 < (𝐵 + 1))) → 0 ≤ (𝐴 / (𝐵 + 1)))
1816, 17sylan2 593 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 / (𝐵 + 1)))
1914, 18jca 511 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) ∈ ℝ ∧ 0 ≤ (𝐴 / (𝐵 + 1))))
20 lep1 12030 . . . 4 (𝐵 ∈ ℝ → 𝐵 ≤ (𝐵 + 1))
2120ad2antrl 728 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ≤ (𝐵 + 1))
22 lemul2a 12044 . . 3 (((𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ ∧ ((𝐴 / (𝐵 + 1)) ∈ ℝ ∧ 0 ≤ (𝐴 / (𝐵 + 1)))) ∧ 𝐵 ≤ (𝐵 + 1)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ ((𝐴 / (𝐵 + 1)) · (𝐵 + 1)))
231, 3, 19, 21, 22syl31anc 1375 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ ((𝐴 / (𝐵 + 1)) · (𝐵 + 1)))
24 recn 11165 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2524ad2antrr 726 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℂ)
262recnd 11209 . . . 4 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℂ)
2726ad2antrl 728 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 + 1) ∈ ℂ)
2825, 27, 13divcan1d 11966 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · (𝐵 + 1)) = 𝐴)
2923, 28breqtrd 5136 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2926   class class class wbr 5110  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216   / cdiv 11842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator