MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivp1 Structured version   Visualization version   GIF version

Theorem ledivp1 11982
Description: "Less than or equal to" and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 28-Sep-2005.)
Assertion
Ref Expression
ledivp1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ 𝐴)

Proof of Theorem ledivp1
StepHypRef Expression
1 simprl 769 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ)
2 peano2re 11253 . . . 4 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
32ad2antrl 726 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 + 1) ∈ ℝ)
4 simpll 765 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ)
5 ltp1 11920 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 < (𝐵 + 1))
6 0re 11082 . . . . . . . . . . 11 0 ∈ ℝ
7 lelttr 11170 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((0 ≤ 𝐵𝐵 < (𝐵 + 1)) → 0 < (𝐵 + 1)))
86, 7mp3an1 1448 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((0 ≤ 𝐵𝐵 < (𝐵 + 1)) → 0 < (𝐵 + 1)))
92, 8mpdan 685 . . . . . . . . 9 (𝐵 ∈ ℝ → ((0 ≤ 𝐵𝐵 < (𝐵 + 1)) → 0 < (𝐵 + 1)))
105, 9mpan2d 692 . . . . . . . 8 (𝐵 ∈ ℝ → (0 ≤ 𝐵 → 0 < (𝐵 + 1)))
1110imp 408 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → 0 < (𝐵 + 1))
1211gt0ne0d 11644 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (𝐵 + 1) ≠ 0)
1312adantl 483 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 + 1) ≠ 0)
144, 3, 13redivcld 11908 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 / (𝐵 + 1)) ∈ ℝ)
152adantr 482 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (𝐵 + 1) ∈ ℝ)
1615, 11jca 513 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐵 + 1) ∈ ℝ ∧ 0 < (𝐵 + 1)))
17 divge0 11949 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ((𝐵 + 1) ∈ ℝ ∧ 0 < (𝐵 + 1))) → 0 ≤ (𝐴 / (𝐵 + 1)))
1816, 17sylan2 594 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 / (𝐵 + 1)))
1914, 18jca 513 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) ∈ ℝ ∧ 0 ≤ (𝐴 / (𝐵 + 1))))
20 lep1 11921 . . . 4 (𝐵 ∈ ℝ → 𝐵 ≤ (𝐵 + 1))
2120ad2antrl 726 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ≤ (𝐵 + 1))
22 lemul2a 11935 . . 3 (((𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ ∧ ((𝐴 / (𝐵 + 1)) ∈ ℝ ∧ 0 ≤ (𝐴 / (𝐵 + 1)))) ∧ 𝐵 ≤ (𝐵 + 1)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ ((𝐴 / (𝐵 + 1)) · (𝐵 + 1)))
231, 3, 19, 21, 22syl31anc 1373 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ ((𝐴 / (𝐵 + 1)) · (𝐵 + 1)))
24 recn 11066 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2524ad2antrr 724 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℂ)
262recnd 11108 . . . 4 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℂ)
2726ad2antrl 726 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 + 1) ∈ ℂ)
2825, 27, 13divcan1d 11857 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · (𝐵 + 1)) = 𝐴)
2923, 28breqtrd 5122 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2106  wne 2941   class class class wbr 5096  (class class class)co 7341  cc 10974  cr 10975  0cc0 10976  1c1 10977   + caddc 10979   · cmul 10981   < clt 11114  cle 11115   / cdiv 11737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-br 5097  df-opab 5159  df-mpt 5180  df-id 5522  df-po 5536  df-so 5537  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8573  df-en 8809  df-dom 8810  df-sdom 8811  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-div 11738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator