MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivp1 Structured version   Visualization version   GIF version

Theorem ledivp1 11531
Description: "Less than or equal to" and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 28-Sep-2005.)
Assertion
Ref Expression
ledivp1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ 𝐴)

Proof of Theorem ledivp1
StepHypRef Expression
1 simprl 770 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ)
2 peano2re 10802 . . . 4 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
32ad2antrl 727 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 + 1) ∈ ℝ)
4 simpll 766 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ)
5 ltp1 11469 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 < (𝐵 + 1))
6 0re 10632 . . . . . . . . . . 11 0 ∈ ℝ
7 lelttr 10720 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((0 ≤ 𝐵𝐵 < (𝐵 + 1)) → 0 < (𝐵 + 1)))
86, 7mp3an1 1445 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((0 ≤ 𝐵𝐵 < (𝐵 + 1)) → 0 < (𝐵 + 1)))
92, 8mpdan 686 . . . . . . . . 9 (𝐵 ∈ ℝ → ((0 ≤ 𝐵𝐵 < (𝐵 + 1)) → 0 < (𝐵 + 1)))
105, 9mpan2d 693 . . . . . . . 8 (𝐵 ∈ ℝ → (0 ≤ 𝐵 → 0 < (𝐵 + 1)))
1110imp 410 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → 0 < (𝐵 + 1))
1211gt0ne0d 11193 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (𝐵 + 1) ≠ 0)
1312adantl 485 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 + 1) ≠ 0)
144, 3, 13redivcld 11457 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 / (𝐵 + 1)) ∈ ℝ)
152adantr 484 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (𝐵 + 1) ∈ ℝ)
1615, 11jca 515 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐵 + 1) ∈ ℝ ∧ 0 < (𝐵 + 1)))
17 divge0 11498 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ((𝐵 + 1) ∈ ℝ ∧ 0 < (𝐵 + 1))) → 0 ≤ (𝐴 / (𝐵 + 1)))
1816, 17sylan2 595 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 / (𝐵 + 1)))
1914, 18jca 515 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) ∈ ℝ ∧ 0 ≤ (𝐴 / (𝐵 + 1))))
20 lep1 11470 . . . 4 (𝐵 ∈ ℝ → 𝐵 ≤ (𝐵 + 1))
2120ad2antrl 727 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ≤ (𝐵 + 1))
22 lemul2a 11484 . . 3 (((𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ ∧ ((𝐴 / (𝐵 + 1)) ∈ ℝ ∧ 0 ≤ (𝐴 / (𝐵 + 1)))) ∧ 𝐵 ≤ (𝐵 + 1)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ ((𝐴 / (𝐵 + 1)) · (𝐵 + 1)))
231, 3, 19, 21, 22syl31anc 1370 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ ((𝐴 / (𝐵 + 1)) · (𝐵 + 1)))
24 recn 10616 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2524ad2antrr 725 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℂ)
262recnd 10658 . . . 4 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℂ)
2726ad2antrl 727 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 + 1) ∈ ℂ)
2825, 27, 13divcan1d 11406 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · (𝐵 + 1)) = 𝐴)
2923, 28breqtrd 5068 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2114  wne 3011   class class class wbr 5042  (class class class)co 7140  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665   / cdiv 11286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-po 5451  df-so 5452  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator