Proof of Theorem ledivp1
Step | Hyp | Ref
| Expression |
1 | | simprl 768 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ) |
2 | | peano2re 11148 |
. . . 4
⊢ (𝐵 ∈ ℝ → (𝐵 + 1) ∈
ℝ) |
3 | 2 | ad2antrl 725 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 + 1) ∈ ℝ) |
4 | | simpll 764 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ) |
5 | | ltp1 11815 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ → 𝐵 < (𝐵 + 1)) |
6 | | 0re 10977 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
7 | | lelttr 11065 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ 𝐵
∈ ℝ ∧ (𝐵 +
1) ∈ ℝ) → ((0 ≤ 𝐵 ∧ 𝐵 < (𝐵 + 1)) → 0 < (𝐵 + 1))) |
8 | 6, 7 | mp3an1 1447 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((0
≤ 𝐵 ∧ 𝐵 < (𝐵 + 1)) → 0 < (𝐵 + 1))) |
9 | 2, 8 | mpdan 684 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ → ((0 ≤
𝐵 ∧ 𝐵 < (𝐵 + 1)) → 0 < (𝐵 + 1))) |
10 | 5, 9 | mpan2d 691 |
. . . . . . . 8
⊢ (𝐵 ∈ ℝ → (0 ≤
𝐵 → 0 < (𝐵 + 1))) |
11 | 10 | imp 407 |
. . . . . . 7
⊢ ((𝐵 ∈ ℝ ∧ 0 ≤
𝐵) → 0 < (𝐵 + 1)) |
12 | 11 | gt0ne0d 11539 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ 0 ≤
𝐵) → (𝐵 + 1) ≠ 0) |
13 | 12 | adantl 482 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 + 1) ≠ 0) |
14 | 4, 3, 13 | redivcld 11803 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 / (𝐵 + 1)) ∈ ℝ) |
15 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ ∧ 0 ≤
𝐵) → (𝐵 + 1) ∈
ℝ) |
16 | 15, 11 | jca 512 |
. . . . 5
⊢ ((𝐵 ∈ ℝ ∧ 0 ≤
𝐵) → ((𝐵 + 1) ∈ ℝ ∧ 0
< (𝐵 +
1))) |
17 | | divge0 11844 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ ((𝐵 + 1) ∈ ℝ ∧ 0
< (𝐵 + 1))) → 0
≤ (𝐴 / (𝐵 + 1))) |
18 | 16, 17 | sylan2 593 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 / (𝐵 + 1))) |
19 | 14, 18 | jca 512 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) ∈ ℝ ∧ 0 ≤ (𝐴 / (𝐵 + 1)))) |
20 | | lep1 11816 |
. . . 4
⊢ (𝐵 ∈ ℝ → 𝐵 ≤ (𝐵 + 1)) |
21 | 20 | ad2antrl 725 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ≤ (𝐵 + 1)) |
22 | | lemul2a 11830 |
. . 3
⊢ (((𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ ∧
((𝐴 / (𝐵 + 1)) ∈ ℝ ∧ 0 ≤ (𝐴 / (𝐵 + 1)))) ∧ 𝐵 ≤ (𝐵 + 1)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ ((𝐴 / (𝐵 + 1)) · (𝐵 + 1))) |
23 | 1, 3, 19, 21, 22 | syl31anc 1372 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ ((𝐴 / (𝐵 + 1)) · (𝐵 + 1))) |
24 | | recn 10961 |
. . . 4
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
25 | 24 | ad2antrr 723 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℂ) |
26 | 2 | recnd 11003 |
. . . 4
⊢ (𝐵 ∈ ℝ → (𝐵 + 1) ∈
ℂ) |
27 | 26 | ad2antrl 725 |
. . 3
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 + 1) ∈ ℂ) |
28 | 25, 27, 13 | divcan1d 11752 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · (𝐵 + 1)) = 𝐴) |
29 | 23, 28 | breqtrd 5100 |
1
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ 𝐴) |