MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivp1 Structured version   Visualization version   GIF version

Theorem ledivp1 12170
Description: "Less than or equal to" and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 28-Sep-2005.)
Assertion
Ref Expression
ledivp1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ 𝐴)

Proof of Theorem ledivp1
StepHypRef Expression
1 simprl 771 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ)
2 peano2re 11434 . . . 4 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
32ad2antrl 728 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 + 1) ∈ ℝ)
4 simpll 767 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ)
5 ltp1 12107 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 < (𝐵 + 1))
6 0re 11263 . . . . . . . . . . 11 0 ∈ ℝ
7 lelttr 11351 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((0 ≤ 𝐵𝐵 < (𝐵 + 1)) → 0 < (𝐵 + 1)))
86, 7mp3an1 1450 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((0 ≤ 𝐵𝐵 < (𝐵 + 1)) → 0 < (𝐵 + 1)))
92, 8mpdan 687 . . . . . . . . 9 (𝐵 ∈ ℝ → ((0 ≤ 𝐵𝐵 < (𝐵 + 1)) → 0 < (𝐵 + 1)))
105, 9mpan2d 694 . . . . . . . 8 (𝐵 ∈ ℝ → (0 ≤ 𝐵 → 0 < (𝐵 + 1)))
1110imp 406 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → 0 < (𝐵 + 1))
1211gt0ne0d 11827 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (𝐵 + 1) ≠ 0)
1312adantl 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 + 1) ≠ 0)
144, 3, 13redivcld 12095 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 / (𝐵 + 1)) ∈ ℝ)
152adantr 480 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (𝐵 + 1) ∈ ℝ)
1615, 11jca 511 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐵 + 1) ∈ ℝ ∧ 0 < (𝐵 + 1)))
17 divge0 12137 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ((𝐵 + 1) ∈ ℝ ∧ 0 < (𝐵 + 1))) → 0 ≤ (𝐴 / (𝐵 + 1)))
1816, 17sylan2 593 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 / (𝐵 + 1)))
1914, 18jca 511 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) ∈ ℝ ∧ 0 ≤ (𝐴 / (𝐵 + 1))))
20 lep1 12108 . . . 4 (𝐵 ∈ ℝ → 𝐵 ≤ (𝐵 + 1))
2120ad2antrl 728 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ≤ (𝐵 + 1))
22 lemul2a 12122 . . 3 (((𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ ∧ ((𝐴 / (𝐵 + 1)) ∈ ℝ ∧ 0 ≤ (𝐴 / (𝐵 + 1)))) ∧ 𝐵 ≤ (𝐵 + 1)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ ((𝐴 / (𝐵 + 1)) · (𝐵 + 1)))
231, 3, 19, 21, 22syl31anc 1375 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ ((𝐴 / (𝐵 + 1)) · (𝐵 + 1)))
24 recn 11245 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2524ad2antrr 726 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℂ)
262recnd 11289 . . . 4 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℂ)
2726ad2antrl 728 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 + 1) ∈ ℂ)
2825, 27, 13divcan1d 12044 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · (𝐵 + 1)) = 𝐴)
2923, 28breqtrd 5169 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2940   class class class wbr 5143  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296   / cdiv 11920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator