MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivp1 Structured version   Visualization version   GIF version

Theorem ledivp1 11877
Description: "Less than or equal to" and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 28-Sep-2005.)
Assertion
Ref Expression
ledivp1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ 𝐴)

Proof of Theorem ledivp1
StepHypRef Expression
1 simprl 768 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ)
2 peano2re 11148 . . . 4 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
32ad2antrl 725 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 + 1) ∈ ℝ)
4 simpll 764 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ)
5 ltp1 11815 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 < (𝐵 + 1))
6 0re 10977 . . . . . . . . . . 11 0 ∈ ℝ
7 lelttr 11065 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((0 ≤ 𝐵𝐵 < (𝐵 + 1)) → 0 < (𝐵 + 1)))
86, 7mp3an1 1447 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ) → ((0 ≤ 𝐵𝐵 < (𝐵 + 1)) → 0 < (𝐵 + 1)))
92, 8mpdan 684 . . . . . . . . 9 (𝐵 ∈ ℝ → ((0 ≤ 𝐵𝐵 < (𝐵 + 1)) → 0 < (𝐵 + 1)))
105, 9mpan2d 691 . . . . . . . 8 (𝐵 ∈ ℝ → (0 ≤ 𝐵 → 0 < (𝐵 + 1)))
1110imp 407 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → 0 < (𝐵 + 1))
1211gt0ne0d 11539 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (𝐵 + 1) ≠ 0)
1312adantl 482 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 + 1) ≠ 0)
144, 3, 13redivcld 11803 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 / (𝐵 + 1)) ∈ ℝ)
152adantr 481 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (𝐵 + 1) ∈ ℝ)
1615, 11jca 512 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐵 + 1) ∈ ℝ ∧ 0 < (𝐵 + 1)))
17 divge0 11844 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ((𝐵 + 1) ∈ ℝ ∧ 0 < (𝐵 + 1))) → 0 ≤ (𝐴 / (𝐵 + 1)))
1816, 17sylan2 593 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 / (𝐵 + 1)))
1914, 18jca 512 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) ∈ ℝ ∧ 0 ≤ (𝐴 / (𝐵 + 1))))
20 lep1 11816 . . . 4 (𝐵 ∈ ℝ → 𝐵 ≤ (𝐵 + 1))
2120ad2antrl 725 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ≤ (𝐵 + 1))
22 lemul2a 11830 . . 3 (((𝐵 ∈ ℝ ∧ (𝐵 + 1) ∈ ℝ ∧ ((𝐴 / (𝐵 + 1)) ∈ ℝ ∧ 0 ≤ (𝐴 / (𝐵 + 1)))) ∧ 𝐵 ≤ (𝐵 + 1)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ ((𝐴 / (𝐵 + 1)) · (𝐵 + 1)))
231, 3, 19, 21, 22syl31anc 1372 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ ((𝐴 / (𝐵 + 1)) · (𝐵 + 1)))
24 recn 10961 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2524ad2antrr 723 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℂ)
262recnd 11003 . . . 4 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℂ)
2726ad2antrl 725 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵 + 1) ∈ ℂ)
2825, 27, 13divcan1d 11752 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · (𝐵 + 1)) = 𝐴)
2923, 28breqtrd 5100 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wne 2943   class class class wbr 5074  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010   / cdiv 11632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator