![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matlmod | Structured version Visualization version GIF version |
Description: The matrix ring is a linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
Ref | Expression |
---|---|
matlmod.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
Ref | Expression |
---|---|
matlmod | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sqxpexg 7758 | . . 3 ⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ V) | |
2 | eqid 2725 | . . . . 5 ⊢ (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁)) | |
3 | 2 | frlmlmod 21705 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁 × 𝑁) ∈ V) → (𝑅 freeLMod (𝑁 × 𝑁)) ∈ LMod) |
4 | 3 | ancoms 457 | . . 3 ⊢ (((𝑁 × 𝑁) ∈ V ∧ 𝑅 ∈ Ring) → (𝑅 freeLMod (𝑁 × 𝑁)) ∈ LMod) |
5 | 1, 4 | sylan 578 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑅 freeLMod (𝑁 × 𝑁)) ∈ LMod) |
6 | eqidd 2726 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))) | |
7 | matlmod.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
8 | 7, 2 | matbas 22362 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴)) |
9 | 7, 2 | matplusg 22363 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g‘𝐴)) |
10 | 9 | oveqdr 7447 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))) → (𝑥(+g‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑦) = (𝑥(+g‘𝐴)𝑦)) |
11 | eqidd 2726 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Scalar‘(𝑅 freeLMod (𝑁 × 𝑁)))) | |
12 | 7, 2 | matsca 22364 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Scalar‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Scalar‘𝐴)) |
13 | eqid 2725 | . . 3 ⊢ (Base‘(Scalar‘(𝑅 freeLMod (𝑁 × 𝑁)))) = (Base‘(Scalar‘(𝑅 freeLMod (𝑁 × 𝑁)))) | |
14 | 7, 2 | matvsca 22366 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁))) = ( ·𝑠 ‘𝐴)) |
15 | 14 | oveqdr 7447 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod (𝑁 × 𝑁)))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod (𝑁 × 𝑁)))𝑦) = (𝑥( ·𝑠 ‘𝐴)𝑦)) |
16 | 6, 8, 10, 11, 12, 13, 15 | lmodpropd 20825 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑅 freeLMod (𝑁 × 𝑁)) ∈ LMod ↔ 𝐴 ∈ LMod)) |
17 | 5, 16 | mpbid 231 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 × cxp 5676 ‘cfv 6549 (class class class)co 7419 Fincfn 8964 Basecbs 17188 +gcplusg 17241 Scalarcsca 17244 ·𝑠 cvsca 17245 Ringcrg 20190 LModclmod 20760 freeLMod cfrlm 21702 Mat cmat 22356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-ot 4639 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9472 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17189 df-ress 17218 df-plusg 17254 df-mulr 17255 df-sca 17257 df-vsca 17258 df-ip 17259 df-tset 17260 df-ple 17261 df-ds 17263 df-hom 17265 df-cco 17266 df-0g 17431 df-prds 17437 df-mgm 18608 df-sgrp 18687 df-mnd 18703 df-grp 18906 df-minusg 18907 df-sbg 18908 df-subg 19091 df-cmn 19754 df-abl 19755 df-mgp 20092 df-rng 20110 df-ur 20139 df-ring 20192 df-subrg 20525 df-lmod 20762 df-lss 20833 df-sra 21075 df-rgmod 21076 df-dsmm 21688 df-frlm 21703 df-mat 22357 |
This theorem is referenced by: matgrp 22381 matvscl 22382 matassa 22395 mat0dimscm 22420 scmatid 22465 scmataddcl 22467 scmatsubcl 22468 smatvscl 22475 scmatghm 22484 scmatmhm 22485 pmatlmod 22644 pm2mp 22776 chpmat1dlem 22786 chpmat1d 22787 cpmidpmatlem3 22823 cpmadugsumlemB 22825 cpmadugsumlemC 22826 chcoeffeqlem 22836 matdim 33446 |
Copyright terms: Public domain | W3C validator |