| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subcss2 | Structured version Visualization version GIF version | ||
| Description: The morphisms of a subcategory are a subset of the morphisms of the original. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| subcss1.1 | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
| subcss1.2 | ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| subcss2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| subcss2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| subcss2.y | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| subcss2 | ⊢ (𝜑 → (𝑋𝐽𝑌) ⊆ (𝑋𝐻𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcss1.2 | . . 3 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) | |
| 2 | subcss1.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
| 3 | eqid 2735 | . . . 4 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 4 | 2, 3 | subcssc 17851 | . . 3 ⊢ (𝜑 → 𝐽 ⊆cat (Homf ‘𝐶)) |
| 5 | subcss2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 6 | subcss2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
| 7 | 1, 4, 5, 6 | ssc2 17833 | . 2 ⊢ (𝜑 → (𝑋𝐽𝑌) ⊆ (𝑋(Homf ‘𝐶)𝑌)) |
| 8 | eqid 2735 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | subcss2.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 10 | 2, 1, 8 | subcss1 17853 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐶)) |
| 11 | 10, 5 | sseldd 3959 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 12 | 10, 6 | sseldd 3959 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 13 | 3, 8, 9, 11, 12 | homfval 17702 | . 2 ⊢ (𝜑 → (𝑋(Homf ‘𝐶)𝑌) = (𝑋𝐻𝑌)) |
| 14 | 7, 13 | sseqtrd 3995 | 1 ⊢ (𝜑 → (𝑋𝐽𝑌) ⊆ (𝑋𝐻𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 × cxp 5652 Fn wfn 6525 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 Hom chom 17280 Homf chomf 17676 Subcatcsubc 17820 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-pm 8841 df-ixp 8910 df-homf 17680 df-ssc 17821 df-subc 17823 |
| This theorem is referenced by: subccatid 17857 funcres 17907 funcres2b 17908 subthinc 49277 |
| Copyright terms: Public domain | W3C validator |