![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subcss2 | Structured version Visualization version GIF version |
Description: The morphisms of a subcategory are a subset of the morphisms of the original. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
subcss1.1 | β’ (π β π½ β (SubcatβπΆ)) |
subcss1.2 | β’ (π β π½ Fn (π Γ π)) |
subcss2.h | β’ π» = (Hom βπΆ) |
subcss2.x | β’ (π β π β π) |
subcss2.y | β’ (π β π β π) |
Ref | Expression |
---|---|
subcss2 | β’ (π β (ππ½π) β (ππ»π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcss1.2 | . . 3 β’ (π β π½ Fn (π Γ π)) | |
2 | subcss1.1 | . . . 4 β’ (π β π½ β (SubcatβπΆ)) | |
3 | eqid 2732 | . . . 4 β’ (Homf βπΆ) = (Homf βπΆ) | |
4 | 2, 3 | subcssc 17789 | . . 3 β’ (π β π½ βcat (Homf βπΆ)) |
5 | subcss2.x | . . 3 β’ (π β π β π) | |
6 | subcss2.y | . . 3 β’ (π β π β π) | |
7 | 1, 4, 5, 6 | ssc2 17768 | . 2 β’ (π β (ππ½π) β (π(Homf βπΆ)π)) |
8 | eqid 2732 | . . 3 β’ (BaseβπΆ) = (BaseβπΆ) | |
9 | subcss2.h | . . 3 β’ π» = (Hom βπΆ) | |
10 | 2, 1, 8 | subcss1 17791 | . . . 4 β’ (π β π β (BaseβπΆ)) |
11 | 10, 5 | sseldd 3983 | . . 3 β’ (π β π β (BaseβπΆ)) |
12 | 10, 6 | sseldd 3983 | . . 3 β’ (π β π β (BaseβπΆ)) |
13 | 3, 8, 9, 11, 12 | homfval 17635 | . 2 β’ (π β (π(Homf βπΆ)π) = (ππ»π)) |
14 | 7, 13 | sseqtrd 4022 | 1 β’ (π β (ππ½π) β (ππ»π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wss 3948 Γ cxp 5674 Fn wfn 6538 βcfv 6543 (class class class)co 7408 Basecbs 17143 Hom chom 17207 Homf chomf 17609 Subcatcsubc 17755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-pm 8822 df-ixp 8891 df-homf 17613 df-ssc 17756 df-subc 17758 |
This theorem is referenced by: subccatid 17795 funcres 17845 funcres2b 17846 subthinc 47650 |
Copyright terms: Public domain | W3C validator |