| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subcss2 | Structured version Visualization version GIF version | ||
| Description: The morphisms of a subcategory are a subset of the morphisms of the original. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| subcss1.1 | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
| subcss1.2 | ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| subcss2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| subcss2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| subcss2.y | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| subcss2 | ⊢ (𝜑 → (𝑋𝐽𝑌) ⊆ (𝑋𝐻𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcss1.2 | . . 3 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) | |
| 2 | subcss1.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
| 3 | eqid 2730 | . . . 4 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 4 | 2, 3 | subcssc 17808 | . . 3 ⊢ (𝜑 → 𝐽 ⊆cat (Homf ‘𝐶)) |
| 5 | subcss2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 6 | subcss2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
| 7 | 1, 4, 5, 6 | ssc2 17790 | . 2 ⊢ (𝜑 → (𝑋𝐽𝑌) ⊆ (𝑋(Homf ‘𝐶)𝑌)) |
| 8 | eqid 2730 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | subcss2.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 10 | 2, 1, 8 | subcss1 17810 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐶)) |
| 11 | 10, 5 | sseldd 3949 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 12 | 10, 6 | sseldd 3949 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 13 | 3, 8, 9, 11, 12 | homfval 17659 | . 2 ⊢ (𝜑 → (𝑋(Homf ‘𝐶)𝑌) = (𝑋𝐻𝑌)) |
| 14 | 7, 13 | sseqtrd 3985 | 1 ⊢ (𝜑 → (𝑋𝐽𝑌) ⊆ (𝑋𝐻𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3916 × cxp 5638 Fn wfn 6508 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 Hom chom 17237 Homf chomf 17633 Subcatcsubc 17777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-pm 8804 df-ixp 8873 df-homf 17637 df-ssc 17778 df-subc 17780 |
| This theorem is referenced by: subccatid 17814 funcres 17864 funcres2b 17865 subthinc 49422 |
| Copyright terms: Public domain | W3C validator |