| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subcss2 | Structured version Visualization version GIF version | ||
| Description: The morphisms of a subcategory are a subset of the morphisms of the original. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| subcss1.1 | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
| subcss1.2 | ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
| subcss2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| subcss2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| subcss2.y | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| subcss2 | ⊢ (𝜑 → (𝑋𝐽𝑌) ⊆ (𝑋𝐻𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcss1.2 | . . 3 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) | |
| 2 | subcss1.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
| 3 | eqid 2733 | . . . 4 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 4 | 2, 3 | subcssc 17749 | . . 3 ⊢ (𝜑 → 𝐽 ⊆cat (Homf ‘𝐶)) |
| 5 | subcss2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 6 | subcss2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
| 7 | 1, 4, 5, 6 | ssc2 17731 | . 2 ⊢ (𝜑 → (𝑋𝐽𝑌) ⊆ (𝑋(Homf ‘𝐶)𝑌)) |
| 8 | eqid 2733 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | subcss2.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 10 | 2, 1, 8 | subcss1 17751 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐶)) |
| 11 | 10, 5 | sseldd 3931 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
| 12 | 10, 6 | sseldd 3931 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
| 13 | 3, 8, 9, 11, 12 | homfval 17600 | . 2 ⊢ (𝜑 → (𝑋(Homf ‘𝐶)𝑌) = (𝑋𝐻𝑌)) |
| 14 | 7, 13 | sseqtrd 3967 | 1 ⊢ (𝜑 → (𝑋𝐽𝑌) ⊆ (𝑋𝐻𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 × cxp 5617 Fn wfn 6481 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Hom chom 17174 Homf chomf 17574 Subcatcsubc 17718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-pm 8759 df-ixp 8828 df-homf 17578 df-ssc 17719 df-subc 17721 |
| This theorem is referenced by: subccatid 17755 funcres 17805 funcres2b 17806 subthinc 49568 |
| Copyright terms: Public domain | W3C validator |