![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subcss2 | Structured version Visualization version GIF version |
Description: The morphisms of a subcategory are a subset of the morphisms of the original. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
subcss1.1 | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
subcss1.2 | ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
subcss2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
subcss2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
subcss2.y | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
Ref | Expression |
---|---|
subcss2 | ⊢ (𝜑 → (𝑋𝐽𝑌) ⊆ (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcss1.2 | . . 3 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) | |
2 | subcss1.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
3 | eqid 2740 | . . . 4 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
4 | 2, 3 | subcssc 17904 | . . 3 ⊢ (𝜑 → 𝐽 ⊆cat (Homf ‘𝐶)) |
5 | subcss2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
6 | subcss2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
7 | 1, 4, 5, 6 | ssc2 17883 | . 2 ⊢ (𝜑 → (𝑋𝐽𝑌) ⊆ (𝑋(Homf ‘𝐶)𝑌)) |
8 | eqid 2740 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
9 | subcss2.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
10 | 2, 1, 8 | subcss1 17906 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐶)) |
11 | 10, 5 | sseldd 4009 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
12 | 10, 6 | sseldd 4009 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
13 | 3, 8, 9, 11, 12 | homfval 17750 | . 2 ⊢ (𝜑 → (𝑋(Homf ‘𝐶)𝑌) = (𝑋𝐻𝑌)) |
14 | 7, 13 | sseqtrd 4049 | 1 ⊢ (𝜑 → (𝑋𝐽𝑌) ⊆ (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 × cxp 5698 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Hom chom 17322 Homf chomf 17724 Subcatcsubc 17870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-pm 8887 df-ixp 8956 df-homf 17728 df-ssc 17871 df-subc 17873 |
This theorem is referenced by: subccatid 17910 funcres 17960 funcres2b 17961 subthinc 48707 |
Copyright terms: Public domain | W3C validator |