MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcss2 Structured version   Visualization version   GIF version

Theorem subcss2 17792
Description: The morphisms of a subcategory are a subset of the morphisms of the original. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
subcss1.1 (πœ‘ β†’ 𝐽 ∈ (Subcatβ€˜πΆ))
subcss1.2 (πœ‘ β†’ 𝐽 Fn (𝑆 Γ— 𝑆))
subcss2.h 𝐻 = (Hom β€˜πΆ)
subcss2.x (πœ‘ β†’ 𝑋 ∈ 𝑆)
subcss2.y (πœ‘ β†’ π‘Œ ∈ 𝑆)
Assertion
Ref Expression
subcss2 (πœ‘ β†’ (π‘‹π½π‘Œ) βŠ† (π‘‹π»π‘Œ))

Proof of Theorem subcss2
StepHypRef Expression
1 subcss1.2 . . 3 (πœ‘ β†’ 𝐽 Fn (𝑆 Γ— 𝑆))
2 subcss1.1 . . . 4 (πœ‘ β†’ 𝐽 ∈ (Subcatβ€˜πΆ))
3 eqid 2732 . . . 4 (Homf β€˜πΆ) = (Homf β€˜πΆ)
42, 3subcssc 17789 . . 3 (πœ‘ β†’ 𝐽 βŠ†cat (Homf β€˜πΆ))
5 subcss2.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝑆)
6 subcss2.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝑆)
71, 4, 5, 6ssc2 17768 . 2 (πœ‘ β†’ (π‘‹π½π‘Œ) βŠ† (𝑋(Homf β€˜πΆ)π‘Œ))
8 eqid 2732 . . 3 (Baseβ€˜πΆ) = (Baseβ€˜πΆ)
9 subcss2.h . . 3 𝐻 = (Hom β€˜πΆ)
102, 1, 8subcss1 17791 . . . 4 (πœ‘ β†’ 𝑆 βŠ† (Baseβ€˜πΆ))
1110, 5sseldd 3983 . . 3 (πœ‘ β†’ 𝑋 ∈ (Baseβ€˜πΆ))
1210, 6sseldd 3983 . . 3 (πœ‘ β†’ π‘Œ ∈ (Baseβ€˜πΆ))
133, 8, 9, 11, 12homfval 17635 . 2 (πœ‘ β†’ (𝑋(Homf β€˜πΆ)π‘Œ) = (π‘‹π»π‘Œ))
147, 13sseqtrd 4022 1 (πœ‘ β†’ (π‘‹π½π‘Œ) βŠ† (π‘‹π»π‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106   βŠ† wss 3948   Γ— cxp 5674   Fn wfn 6538  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  Hom chom 17207  Homf chomf 17609  Subcatcsubc 17755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-pm 8822  df-ixp 8891  df-homf 17613  df-ssc 17756  df-subc 17758
This theorem is referenced by:  subccatid  17795  funcres  17845  funcres2b  17846  subthinc  47650
  Copyright terms: Public domain W3C validator