![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subcss2 | Structured version Visualization version GIF version |
Description: The morphisms of a subcategory are a subset of the morphisms of the original. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
subcss1.1 | ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) |
subcss1.2 | ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
subcss2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
subcss2.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
subcss2.y | ⊢ (𝜑 → 𝑌 ∈ 𝑆) |
Ref | Expression |
---|---|
subcss2 | ⊢ (𝜑 → (𝑋𝐽𝑌) ⊆ (𝑋𝐻𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subcss1.2 | . . 3 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) | |
2 | subcss1.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (Subcat‘𝐶)) | |
3 | eqid 2734 | . . . 4 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
4 | 2, 3 | subcssc 17890 | . . 3 ⊢ (𝜑 → 𝐽 ⊆cat (Homf ‘𝐶)) |
5 | subcss2.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
6 | subcss2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑆) | |
7 | 1, 4, 5, 6 | ssc2 17869 | . 2 ⊢ (𝜑 → (𝑋𝐽𝑌) ⊆ (𝑋(Homf ‘𝐶)𝑌)) |
8 | eqid 2734 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
9 | subcss2.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
10 | 2, 1, 8 | subcss1 17892 | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐶)) |
11 | 10, 5 | sseldd 3995 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
12 | 10, 6 | sseldd 3995 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
13 | 3, 8, 9, 11, 12 | homfval 17736 | . 2 ⊢ (𝜑 → (𝑋(Homf ‘𝐶)𝑌) = (𝑋𝐻𝑌)) |
14 | 7, 13 | sseqtrd 4035 | 1 ⊢ (𝜑 → (𝑋𝐽𝑌) ⊆ (𝑋𝐻𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ⊆ wss 3962 × cxp 5686 Fn wfn 6557 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 Hom chom 17308 Homf chomf 17710 Subcatcsubc 17856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-pm 8867 df-ixp 8936 df-homf 17714 df-ssc 17857 df-subc 17859 |
This theorem is referenced by: subccatid 17896 funcres 17946 funcres2b 17947 subthinc 48839 |
Copyright terms: Public domain | W3C validator |