| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoeq1 | Structured version Visualization version GIF version | ||
| Description: Condition determining equality of two trace-preserving endomorphisms. (Contributed by NM, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| tendoeq1 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑈 = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) | |
| 2 | simp1 1136 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 3 | simp2l 1200 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑈 ∈ 𝐸) | |
| 4 | tendof.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | tendof.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 6 | tendof.e | . . . . . 6 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 7 | 4, 5, 6 | tendof 40872 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → 𝑈:𝑇⟶𝑇) |
| 8 | 2, 3, 7 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑈:𝑇⟶𝑇) |
| 9 | 8 | ffnd 6652 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑈 Fn 𝑇) |
| 10 | simp2r 1201 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑉 ∈ 𝐸) | |
| 11 | 4, 5, 6 | tendof 40872 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑉 ∈ 𝐸) → 𝑉:𝑇⟶𝑇) |
| 12 | 2, 10, 11 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑉:𝑇⟶𝑇) |
| 13 | 12 | ffnd 6652 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑉 Fn 𝑇) |
| 14 | eqfnfv 6964 | . . 3 ⊢ ((𝑈 Fn 𝑇 ∧ 𝑉 Fn 𝑇) → (𝑈 = 𝑉 ↔ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓))) | |
| 15 | 9, 13, 14 | syl2anc 584 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → (𝑈 = 𝑉 ↔ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓))) |
| 16 | 1, 15 | mpbird 257 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑈 = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 HLchlt 39459 LHypclh 40093 LTrncltrn 40210 TEndoctendo 40861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-tendo 40864 |
| This theorem is referenced by: tendoeq2 40883 tendoplcom 40891 tendoplass 40892 tendodi1 40893 tendodi2 40894 tendo0pl 40900 tendoipl 40906 |
| Copyright terms: Public domain | W3C validator |