![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoeq1 | Structured version Visualization version GIF version |
Description: Condition determining equality of two trace-preserving endomorphisms. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendoeq1 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑈 = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) | |
2 | simp1 1136 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
3 | simp2l 1199 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑈 ∈ 𝐸) | |
4 | tendof.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | tendof.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | tendof.e | . . . . . 6 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
7 | 4, 5, 6 | tendof 40720 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → 𝑈:𝑇⟶𝑇) |
8 | 2, 3, 7 | syl2anc 583 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑈:𝑇⟶𝑇) |
9 | 8 | ffnd 6748 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑈 Fn 𝑇) |
10 | simp2r 1200 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑉 ∈ 𝐸) | |
11 | 4, 5, 6 | tendof 40720 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑉 ∈ 𝐸) → 𝑉:𝑇⟶𝑇) |
12 | 2, 10, 11 | syl2anc 583 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑉:𝑇⟶𝑇) |
13 | 12 | ffnd 6748 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑉 Fn 𝑇) |
14 | eqfnfv 7064 | . . 3 ⊢ ((𝑈 Fn 𝑇 ∧ 𝑉 Fn 𝑇) → (𝑈 = 𝑉 ↔ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓))) | |
15 | 9, 13, 14 | syl2anc 583 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → (𝑈 = 𝑉 ↔ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓))) |
16 | 1, 15 | mpbird 257 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑈 = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 HLchlt 39306 LHypclh 39941 LTrncltrn 40058 TEndoctendo 40709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-tendo 40712 |
This theorem is referenced by: tendoeq2 40731 tendoplcom 40739 tendoplass 40740 tendodi1 40741 tendodi2 40742 tendo0pl 40748 tendoipl 40754 |
Copyright terms: Public domain | W3C validator |