Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoeq1 Structured version   Visualization version   GIF version

Theorem tendoeq1 40873
Description: Condition determining equality of two trace-preserving endomorphisms. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
tendof.h 𝐻 = (LHyp‘𝐾)
tendof.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendof.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
Assertion
Ref Expression
tendoeq1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓)) → 𝑈 = 𝑉)
Distinct variable groups:   𝑓,𝐾   𝑇,𝑓   𝑓,𝑊   𝑈,𝑓   𝑓,𝑉
Allowed substitution hints:   𝐸(𝑓)   𝐻(𝑓)

Proof of Theorem tendoeq1
StepHypRef Expression
1 simp3 1138 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓)) → ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓))
2 simp1 1136 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
3 simp2l 1200 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓)) → 𝑈𝐸)
4 tendof.h . . . . . 6 𝐻 = (LHyp‘𝐾)
5 tendof.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 tendof.e . . . . . 6 𝐸 = ((TEndo‘𝐾)‘𝑊)
74, 5, 6tendof 40872 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸) → 𝑈:𝑇𝑇)
82, 3, 7syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓)) → 𝑈:𝑇𝑇)
98ffnd 6652 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓)) → 𝑈 Fn 𝑇)
10 simp2r 1201 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓)) → 𝑉𝐸)
114, 5, 6tendof 40872 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸) → 𝑉:𝑇𝑇)
122, 10, 11syl2anc 584 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓)) → 𝑉:𝑇𝑇)
1312ffnd 6652 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓)) → 𝑉 Fn 𝑇)
14 eqfnfv 6964 . . 3 ((𝑈 Fn 𝑇𝑉 Fn 𝑇) → (𝑈 = 𝑉 ↔ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓)))
159, 13, 14syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓)) → (𝑈 = 𝑉 ↔ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓)))
161, 15mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ ∀𝑓𝑇 (𝑈𝑓) = (𝑉𝑓)) → 𝑈 = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047   Fn wfn 6476  wf 6477  cfv 6481  HLchlt 39459  LHypclh 40093  LTrncltrn 40210  TEndoctendo 40861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-tendo 40864
This theorem is referenced by:  tendoeq2  40883  tendoplcom  40891  tendoplass  40892  tendodi1  40893  tendodi2  40894  tendo0pl  40900  tendoipl  40906
  Copyright terms: Public domain W3C validator