Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoeq1 | Structured version Visualization version GIF version |
Description: Condition determining equality of two trace-preserving endomorphisms. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
tendof.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendof.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendof.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tendoeq1 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑈 = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1137 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) | |
2 | simp1 1135 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
3 | simp2l 1198 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑈 ∈ 𝐸) | |
4 | tendof.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | tendof.t | . . . . . 6 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
6 | tendof.e | . . . . . 6 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
7 | 4, 5, 6 | tendof 38777 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → 𝑈:𝑇⟶𝑇) |
8 | 2, 3, 7 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑈:𝑇⟶𝑇) |
9 | 8 | ffnd 6601 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑈 Fn 𝑇) |
10 | simp2r 1199 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑉 ∈ 𝐸) | |
11 | 4, 5, 6 | tendof 38777 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑉 ∈ 𝐸) → 𝑉:𝑇⟶𝑇) |
12 | 2, 10, 11 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑉:𝑇⟶𝑇) |
13 | 12 | ffnd 6601 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑉 Fn 𝑇) |
14 | eqfnfv 6909 | . . 3 ⊢ ((𝑈 Fn 𝑇 ∧ 𝑉 Fn 𝑇) → (𝑈 = 𝑉 ↔ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓))) | |
15 | 9, 13, 14 | syl2anc 584 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → (𝑈 = 𝑉 ↔ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓))) |
16 | 1, 15 | mpbird 256 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑈 = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 TEndoctendo 38766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-tendo 38769 |
This theorem is referenced by: tendoeq2 38788 tendoplcom 38796 tendoplass 38797 tendodi1 38798 tendodi2 38799 tendo0pl 38805 tendoipl 38811 |
Copyright terms: Public domain | W3C validator |