Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendodi1 Structured version   Visualization version   GIF version

Theorem tendodi1 40778
Description: Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHyp‘𝐾)
tendopl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendopl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendopl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
Assertion
Ref Expression
tendodi1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆 ∘ (𝑈𝑃𝑉)) = ((𝑆𝑈)𝑃(𝑆𝑉)))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑆(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendodi1
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpr1 1195 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑆𝐸)
3 simpr2 1196 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑈𝐸)
4 simpr3 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑉𝐸)
5 tendopl.h . . . . 5 𝐻 = (LHyp‘𝐾)
6 tendopl.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
7 tendopl.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
8 tendopl.p . . . . 5 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
95, 6, 7, 8tendoplcl 40775 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) ∈ 𝐸)
101, 3, 4, 9syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑈𝑃𝑉) ∈ 𝐸)
115, 7tendococl 40766 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝑈𝑃𝑉) ∈ 𝐸) → (𝑆 ∘ (𝑈𝑃𝑉)) ∈ 𝐸)
121, 2, 10, 11syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆 ∘ (𝑈𝑃𝑉)) ∈ 𝐸)
135, 7tendococl 40766 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑈𝐸) → (𝑆𝑈) ∈ 𝐸)
141, 2, 3, 13syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆𝑈) ∈ 𝐸)
155, 7tendococl 40766 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑉𝐸) → (𝑆𝑉) ∈ 𝐸)
161, 2, 4, 15syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆𝑉) ∈ 𝐸)
175, 6, 7, 8tendoplcl 40775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑈) ∈ 𝐸 ∧ (𝑆𝑉) ∈ 𝐸) → ((𝑆𝑈)𝑃(𝑆𝑉)) ∈ 𝐸)
181, 14, 16, 17syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑈)𝑃(𝑆𝑉)) ∈ 𝐸)
19 simplll 774 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝐾 ∈ HL)
20 simpllr 775 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑊𝐻)
21 simplr1 1216 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑆𝐸)
22 simpll 766 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
23 simplr2 1217 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑈𝐸)
24 simpr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑔𝑇)
255, 6, 7tendocl 40761 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑔𝑇) → (𝑈𝑔) ∈ 𝑇)
2622, 23, 24, 25syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑈𝑔) ∈ 𝑇)
27 simplr3 1218 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑉𝐸)
285, 6, 7tendocl 40761 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
2922, 27, 24, 28syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
305, 6, 7tendovalco 40759 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑆𝐸) ∧ ((𝑈𝑔) ∈ 𝑇 ∧ (𝑉𝑔) ∈ 𝑇)) → (𝑆‘((𝑈𝑔) ∘ (𝑉𝑔))) = ((𝑆‘(𝑈𝑔)) ∘ (𝑆‘(𝑉𝑔))))
3119, 20, 21, 26, 29, 30syl32anc 1380 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑆‘((𝑈𝑔) ∘ (𝑉𝑔))) = ((𝑆‘(𝑈𝑔)) ∘ (𝑆‘(𝑉𝑔))))
328, 6tendopl2 40771 . . . . . . 7 ((𝑈𝐸𝑉𝐸𝑔𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑈𝑔) ∘ (𝑉𝑔)))
3323, 27, 24, 32syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑈𝑔) ∘ (𝑉𝑔)))
3433fveq2d 6862 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑆‘((𝑈𝑃𝑉)‘𝑔)) = (𝑆‘((𝑈𝑔) ∘ (𝑉𝑔))))
355, 6, 7tendocoval 40760 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸) ∧ 𝑔𝑇) → ((𝑆𝑈)‘𝑔) = (𝑆‘(𝑈𝑔)))
3619, 20, 21, 23, 24, 35syl221anc 1383 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆𝑈)‘𝑔) = (𝑆‘(𝑈𝑔)))
375, 6, 7tendocoval 40760 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑉𝐸) ∧ 𝑔𝑇) → ((𝑆𝑉)‘𝑔) = (𝑆‘(𝑉𝑔)))
3819, 20, 21, 27, 24, 37syl221anc 1383 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆𝑉)‘𝑔) = (𝑆‘(𝑉𝑔)))
3936, 38coeq12d 5828 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑈)‘𝑔) ∘ ((𝑆𝑉)‘𝑔)) = ((𝑆‘(𝑈𝑔)) ∘ (𝑆‘(𝑉𝑔))))
4031, 34, 393eqtr4rd 2775 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑈)‘𝑔) ∘ ((𝑆𝑉)‘𝑔)) = (𝑆‘((𝑈𝑃𝑉)‘𝑔)))
4122, 21, 23, 13syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑆𝑈) ∈ 𝐸)
4222, 21, 27, 15syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑆𝑉) ∈ 𝐸)
438, 6tendopl2 40771 . . . . 5 (((𝑆𝑈) ∈ 𝐸 ∧ (𝑆𝑉) ∈ 𝐸𝑔𝑇) → (((𝑆𝑈)𝑃(𝑆𝑉))‘𝑔) = (((𝑆𝑈)‘𝑔) ∘ ((𝑆𝑉)‘𝑔)))
4441, 42, 24, 43syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑈)𝑃(𝑆𝑉))‘𝑔) = (((𝑆𝑈)‘𝑔) ∘ ((𝑆𝑉)‘𝑔)))
4522, 23, 27, 9syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑈𝑃𝑉) ∈ 𝐸)
465, 6, 7tendocoval 40760 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸 ∧ (𝑈𝑃𝑉) ∈ 𝐸) ∧ 𝑔𝑇) → ((𝑆 ∘ (𝑈𝑃𝑉))‘𝑔) = (𝑆‘((𝑈𝑃𝑉)‘𝑔)))
4722, 21, 45, 24, 46syl121anc 1377 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆 ∘ (𝑈𝑃𝑉))‘𝑔) = (𝑆‘((𝑈𝑃𝑉)‘𝑔)))
4840, 44, 473eqtr4rd 2775 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆 ∘ (𝑈𝑃𝑉))‘𝑔) = (((𝑆𝑈)𝑃(𝑆𝑉))‘𝑔))
4948ralrimiva 3125 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ∀𝑔𝑇 ((𝑆 ∘ (𝑈𝑃𝑉))‘𝑔) = (((𝑆𝑈)𝑃(𝑆𝑉))‘𝑔))
505, 6, 7tendoeq1 40758 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆 ∘ (𝑈𝑃𝑉)) ∈ 𝐸 ∧ ((𝑆𝑈)𝑃(𝑆𝑉)) ∈ 𝐸) ∧ ∀𝑔𝑇 ((𝑆 ∘ (𝑈𝑃𝑉))‘𝑔) = (((𝑆𝑈)𝑃(𝑆𝑉))‘𝑔)) → (𝑆 ∘ (𝑈𝑃𝑉)) = ((𝑆𝑈)𝑃(𝑆𝑉)))
511, 12, 18, 49, 50syl121anc 1377 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆 ∘ (𝑈𝑃𝑉)) = ((𝑆𝑈)𝑃(𝑆𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cmpt 5188  ccom 5642  cfv 6511  (class class class)co 7387  cmpo 7389  HLchlt 39343  LHypclh 39978  LTrncltrn 40095  TEndoctendo 40746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-undef 8252  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-tendo 40749
This theorem is referenced by:  erngdvlem3  40984  erngdvlem3-rN  40992
  Copyright terms: Public domain W3C validator