Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendodi1 Structured version   Visualization version   GIF version

Theorem tendodi1 40727
Description: Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHyp‘𝐾)
tendopl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendopl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendopl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
Assertion
Ref Expression
tendodi1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆 ∘ (𝑈𝑃𝑉)) = ((𝑆𝑈)𝑃(𝑆𝑉)))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑆(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendodi1
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpr1 1194 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑆𝐸)
3 simpr2 1195 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑈𝐸)
4 simpr3 1196 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑉𝐸)
5 tendopl.h . . . . 5 𝐻 = (LHyp‘𝐾)
6 tendopl.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
7 tendopl.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
8 tendopl.p . . . . 5 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
95, 6, 7, 8tendoplcl 40724 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) ∈ 𝐸)
101, 3, 4, 9syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑈𝑃𝑉) ∈ 𝐸)
115, 7tendococl 40715 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝑈𝑃𝑉) ∈ 𝐸) → (𝑆 ∘ (𝑈𝑃𝑉)) ∈ 𝐸)
121, 2, 10, 11syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆 ∘ (𝑈𝑃𝑉)) ∈ 𝐸)
135, 7tendococl 40715 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑈𝐸) → (𝑆𝑈) ∈ 𝐸)
141, 2, 3, 13syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆𝑈) ∈ 𝐸)
155, 7tendococl 40715 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑉𝐸) → (𝑆𝑉) ∈ 𝐸)
161, 2, 4, 15syl3anc 1372 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆𝑉) ∈ 𝐸)
175, 6, 7, 8tendoplcl 40724 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑈) ∈ 𝐸 ∧ (𝑆𝑉) ∈ 𝐸) → ((𝑆𝑈)𝑃(𝑆𝑉)) ∈ 𝐸)
181, 14, 16, 17syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑈)𝑃(𝑆𝑉)) ∈ 𝐸)
19 simplll 774 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝐾 ∈ HL)
20 simpllr 775 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑊𝐻)
21 simplr1 1215 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑆𝐸)
22 simpll 766 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
23 simplr2 1216 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑈𝐸)
24 simpr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑔𝑇)
255, 6, 7tendocl 40710 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑔𝑇) → (𝑈𝑔) ∈ 𝑇)
2622, 23, 24, 25syl3anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑈𝑔) ∈ 𝑇)
27 simplr3 1217 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑉𝐸)
285, 6, 7tendocl 40710 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
2922, 27, 24, 28syl3anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
305, 6, 7tendovalco 40708 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑆𝐸) ∧ ((𝑈𝑔) ∈ 𝑇 ∧ (𝑉𝑔) ∈ 𝑇)) → (𝑆‘((𝑈𝑔) ∘ (𝑉𝑔))) = ((𝑆‘(𝑈𝑔)) ∘ (𝑆‘(𝑉𝑔))))
3119, 20, 21, 26, 29, 30syl32anc 1379 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑆‘((𝑈𝑔) ∘ (𝑉𝑔))) = ((𝑆‘(𝑈𝑔)) ∘ (𝑆‘(𝑉𝑔))))
328, 6tendopl2 40720 . . . . . . 7 ((𝑈𝐸𝑉𝐸𝑔𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑈𝑔) ∘ (𝑉𝑔)))
3323, 27, 24, 32syl3anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑈𝑔) ∘ (𝑉𝑔)))
3433fveq2d 6891 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑆‘((𝑈𝑃𝑉)‘𝑔)) = (𝑆‘((𝑈𝑔) ∘ (𝑉𝑔))))
355, 6, 7tendocoval 40709 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸) ∧ 𝑔𝑇) → ((𝑆𝑈)‘𝑔) = (𝑆‘(𝑈𝑔)))
3619, 20, 21, 23, 24, 35syl221anc 1382 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆𝑈)‘𝑔) = (𝑆‘(𝑈𝑔)))
375, 6, 7tendocoval 40709 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑉𝐸) ∧ 𝑔𝑇) → ((𝑆𝑉)‘𝑔) = (𝑆‘(𝑉𝑔)))
3819, 20, 21, 27, 24, 37syl221anc 1382 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆𝑉)‘𝑔) = (𝑆‘(𝑉𝑔)))
3936, 38coeq12d 5857 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑈)‘𝑔) ∘ ((𝑆𝑉)‘𝑔)) = ((𝑆‘(𝑈𝑔)) ∘ (𝑆‘(𝑉𝑔))))
4031, 34, 393eqtr4rd 2780 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑈)‘𝑔) ∘ ((𝑆𝑉)‘𝑔)) = (𝑆‘((𝑈𝑃𝑉)‘𝑔)))
4122, 21, 23, 13syl3anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑆𝑈) ∈ 𝐸)
4222, 21, 27, 15syl3anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑆𝑉) ∈ 𝐸)
438, 6tendopl2 40720 . . . . 5 (((𝑆𝑈) ∈ 𝐸 ∧ (𝑆𝑉) ∈ 𝐸𝑔𝑇) → (((𝑆𝑈)𝑃(𝑆𝑉))‘𝑔) = (((𝑆𝑈)‘𝑔) ∘ ((𝑆𝑉)‘𝑔)))
4441, 42, 24, 43syl3anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑈)𝑃(𝑆𝑉))‘𝑔) = (((𝑆𝑈)‘𝑔) ∘ ((𝑆𝑉)‘𝑔)))
4522, 23, 27, 9syl3anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑈𝑃𝑉) ∈ 𝐸)
465, 6, 7tendocoval 40709 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸 ∧ (𝑈𝑃𝑉) ∈ 𝐸) ∧ 𝑔𝑇) → ((𝑆 ∘ (𝑈𝑃𝑉))‘𝑔) = (𝑆‘((𝑈𝑃𝑉)‘𝑔)))
4722, 21, 45, 24, 46syl121anc 1376 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆 ∘ (𝑈𝑃𝑉))‘𝑔) = (𝑆‘((𝑈𝑃𝑉)‘𝑔)))
4840, 44, 473eqtr4rd 2780 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆 ∘ (𝑈𝑃𝑉))‘𝑔) = (((𝑆𝑈)𝑃(𝑆𝑉))‘𝑔))
4948ralrimiva 3133 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ∀𝑔𝑇 ((𝑆 ∘ (𝑈𝑃𝑉))‘𝑔) = (((𝑆𝑈)𝑃(𝑆𝑉))‘𝑔))
505, 6, 7tendoeq1 40707 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆 ∘ (𝑈𝑃𝑉)) ∈ 𝐸 ∧ ((𝑆𝑈)𝑃(𝑆𝑉)) ∈ 𝐸) ∧ ∀𝑔𝑇 ((𝑆 ∘ (𝑈𝑃𝑉))‘𝑔) = (((𝑆𝑈)𝑃(𝑆𝑉))‘𝑔)) → (𝑆 ∘ (𝑈𝑃𝑉)) = ((𝑆𝑈)𝑃(𝑆𝑉)))
511, 12, 18, 49, 50syl121anc 1376 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆 ∘ (𝑈𝑃𝑉)) = ((𝑆𝑈)𝑃(𝑆𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  cmpt 5207  ccom 5671  cfv 6542  (class class class)co 7414  cmpo 7416  HLchlt 39292  LHypclh 39927  LTrncltrn 40044  TEndoctendo 40695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-riotaBAD 38895
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-iin 4976  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-undef 8281  df-map 8851  df-proset 18315  df-poset 18334  df-plt 18349  df-lub 18365  df-glb 18366  df-join 18367  df-meet 18368  df-p0 18444  df-p1 18445  df-lat 18451  df-clat 18518  df-oposet 39118  df-ol 39120  df-oml 39121  df-covers 39208  df-ats 39209  df-atl 39240  df-cvlat 39264  df-hlat 39293  df-llines 39441  df-lplanes 39442  df-lvols 39443  df-lines 39444  df-psubsp 39446  df-pmap 39447  df-padd 39739  df-lhyp 39931  df-laut 39932  df-ldil 40047  df-ltrn 40048  df-trl 40102  df-tendo 40698
This theorem is referenced by:  erngdvlem3  40933  erngdvlem3-rN  40941
  Copyright terms: Public domain W3C validator