Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendodi1 Structured version   Visualization version   GIF version

Theorem tendodi1 40741
Description: Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHyp‘𝐾)
tendopl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendopl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendopl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
Assertion
Ref Expression
tendodi1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆 ∘ (𝑈𝑃𝑉)) = ((𝑆𝑈)𝑃(𝑆𝑉)))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑆(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendodi1
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpr1 1194 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑆𝐸)
3 simpr2 1195 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑈𝐸)
4 simpr3 1196 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑉𝐸)
5 tendopl.h . . . . 5 𝐻 = (LHyp‘𝐾)
6 tendopl.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
7 tendopl.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
8 tendopl.p . . . . 5 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
95, 6, 7, 8tendoplcl 40738 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) ∈ 𝐸)
101, 3, 4, 9syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑈𝑃𝑉) ∈ 𝐸)
115, 7tendococl 40729 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝑈𝑃𝑉) ∈ 𝐸) → (𝑆 ∘ (𝑈𝑃𝑉)) ∈ 𝐸)
121, 2, 10, 11syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆 ∘ (𝑈𝑃𝑉)) ∈ 𝐸)
135, 7tendococl 40729 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑈𝐸) → (𝑆𝑈) ∈ 𝐸)
141, 2, 3, 13syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆𝑈) ∈ 𝐸)
155, 7tendococl 40729 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑉𝐸) → (𝑆𝑉) ∈ 𝐸)
161, 2, 4, 15syl3anc 1371 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆𝑉) ∈ 𝐸)
175, 6, 7, 8tendoplcl 40738 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑈) ∈ 𝐸 ∧ (𝑆𝑉) ∈ 𝐸) → ((𝑆𝑈)𝑃(𝑆𝑉)) ∈ 𝐸)
181, 14, 16, 17syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑈)𝑃(𝑆𝑉)) ∈ 𝐸)
19 simplll 774 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝐾 ∈ HL)
20 simpllr 775 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑊𝐻)
21 simplr1 1215 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑆𝐸)
22 simpll 766 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
23 simplr2 1216 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑈𝐸)
24 simpr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑔𝑇)
255, 6, 7tendocl 40724 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑔𝑇) → (𝑈𝑔) ∈ 𝑇)
2622, 23, 24, 25syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑈𝑔) ∈ 𝑇)
27 simplr3 1217 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑉𝐸)
285, 6, 7tendocl 40724 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
2922, 27, 24, 28syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
305, 6, 7tendovalco 40722 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻𝑆𝐸) ∧ ((𝑈𝑔) ∈ 𝑇 ∧ (𝑉𝑔) ∈ 𝑇)) → (𝑆‘((𝑈𝑔) ∘ (𝑉𝑔))) = ((𝑆‘(𝑈𝑔)) ∘ (𝑆‘(𝑉𝑔))))
3119, 20, 21, 26, 29, 30syl32anc 1378 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑆‘((𝑈𝑔) ∘ (𝑉𝑔))) = ((𝑆‘(𝑈𝑔)) ∘ (𝑆‘(𝑉𝑔))))
328, 6tendopl2 40734 . . . . . . 7 ((𝑈𝐸𝑉𝐸𝑔𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑈𝑔) ∘ (𝑉𝑔)))
3323, 27, 24, 32syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑈𝑔) ∘ (𝑉𝑔)))
3433fveq2d 6924 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑆‘((𝑈𝑃𝑉)‘𝑔)) = (𝑆‘((𝑈𝑔) ∘ (𝑉𝑔))))
355, 6, 7tendocoval 40723 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸) ∧ 𝑔𝑇) → ((𝑆𝑈)‘𝑔) = (𝑆‘(𝑈𝑔)))
3619, 20, 21, 23, 24, 35syl221anc 1381 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆𝑈)‘𝑔) = (𝑆‘(𝑈𝑔)))
375, 6, 7tendocoval 40723 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑉𝐸) ∧ 𝑔𝑇) → ((𝑆𝑉)‘𝑔) = (𝑆‘(𝑉𝑔)))
3819, 20, 21, 27, 24, 37syl221anc 1381 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆𝑉)‘𝑔) = (𝑆‘(𝑉𝑔)))
3936, 38coeq12d 5889 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑈)‘𝑔) ∘ ((𝑆𝑉)‘𝑔)) = ((𝑆‘(𝑈𝑔)) ∘ (𝑆‘(𝑉𝑔))))
4031, 34, 393eqtr4rd 2791 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑈)‘𝑔) ∘ ((𝑆𝑉)‘𝑔)) = (𝑆‘((𝑈𝑃𝑉)‘𝑔)))
4122, 21, 23, 13syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑆𝑈) ∈ 𝐸)
4222, 21, 27, 15syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑆𝑉) ∈ 𝐸)
438, 6tendopl2 40734 . . . . 5 (((𝑆𝑈) ∈ 𝐸 ∧ (𝑆𝑉) ∈ 𝐸𝑔𝑇) → (((𝑆𝑈)𝑃(𝑆𝑉))‘𝑔) = (((𝑆𝑈)‘𝑔) ∘ ((𝑆𝑉)‘𝑔)))
4441, 42, 24, 43syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑈)𝑃(𝑆𝑉))‘𝑔) = (((𝑆𝑈)‘𝑔) ∘ ((𝑆𝑉)‘𝑔)))
4522, 23, 27, 9syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑈𝑃𝑉) ∈ 𝐸)
465, 6, 7tendocoval 40723 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸 ∧ (𝑈𝑃𝑉) ∈ 𝐸) ∧ 𝑔𝑇) → ((𝑆 ∘ (𝑈𝑃𝑉))‘𝑔) = (𝑆‘((𝑈𝑃𝑉)‘𝑔)))
4722, 21, 45, 24, 46syl121anc 1375 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆 ∘ (𝑈𝑃𝑉))‘𝑔) = (𝑆‘((𝑈𝑃𝑉)‘𝑔)))
4840, 44, 473eqtr4rd 2791 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆 ∘ (𝑈𝑃𝑉))‘𝑔) = (((𝑆𝑈)𝑃(𝑆𝑉))‘𝑔))
4948ralrimiva 3152 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ∀𝑔𝑇 ((𝑆 ∘ (𝑈𝑃𝑉))‘𝑔) = (((𝑆𝑈)𝑃(𝑆𝑉))‘𝑔))
505, 6, 7tendoeq1 40721 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆 ∘ (𝑈𝑃𝑉)) ∈ 𝐸 ∧ ((𝑆𝑈)𝑃(𝑆𝑉)) ∈ 𝐸) ∧ ∀𝑔𝑇 ((𝑆 ∘ (𝑈𝑃𝑉))‘𝑔) = (((𝑆𝑈)𝑃(𝑆𝑉))‘𝑔)) → (𝑆 ∘ (𝑈𝑃𝑉)) = ((𝑆𝑈)𝑃(𝑆𝑉)))
511, 12, 18, 49, 50syl121anc 1375 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆 ∘ (𝑈𝑃𝑉)) = ((𝑆𝑈)𝑃(𝑆𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cmpt 5249  ccom 5704  cfv 6573  (class class class)co 7448  cmpo 7450  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  TEndoctendo 40709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-undef 8314  df-map 8886  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-tendo 40712
This theorem is referenced by:  erngdvlem3  40947  erngdvlem3-rN  40955
  Copyright terms: Public domain W3C validator