| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoplcom | Structured version Visualization version GIF version | ||
| Description: The endomorphism sum operation is commutative. (Contributed by NM, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendopl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendopl.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendopl.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| tendopl.p | ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
| Ref | Expression |
|---|---|
| tendoplcom | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) = (𝑉𝑃𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | tendopl.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | tendopl.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | tendopl.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 5 | tendopl.p | . . 3 ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
| 6 | 2, 3, 4, 5 | tendoplcl 40890 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) ∈ 𝐸) |
| 7 | 2, 3, 4, 5 | tendoplcl 40890 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑉 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸) → (𝑉𝑃𝑈) ∈ 𝐸) |
| 8 | 7 | 3com23 1126 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑉𝑃𝑈) ∈ 𝐸) |
| 9 | simpl1 1192 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 10 | simpl2 1193 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑈 ∈ 𝐸) | |
| 11 | simpr 484 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑔 ∈ 𝑇) | |
| 12 | 2, 3, 4 | tendocl 40876 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → (𝑈‘𝑔) ∈ 𝑇) |
| 13 | 9, 10, 11, 12 | syl3anc 1373 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑈‘𝑔) ∈ 𝑇) |
| 14 | simpl3 1194 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑉 ∈ 𝐸) | |
| 15 | 2, 3, 4 | tendocl 40876 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑉 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → (𝑉‘𝑔) ∈ 𝑇) |
| 16 | 9, 14, 11, 15 | syl3anc 1373 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑉‘𝑔) ∈ 𝑇) |
| 17 | 2, 3 | ltrncom 40847 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈‘𝑔) ∈ 𝑇 ∧ (𝑉‘𝑔) ∈ 𝑇) → ((𝑈‘𝑔) ∘ (𝑉‘𝑔)) = ((𝑉‘𝑔) ∘ (𝑈‘𝑔))) |
| 18 | 9, 13, 16, 17 | syl3anc 1373 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑈‘𝑔) ∘ (𝑉‘𝑔)) = ((𝑉‘𝑔) ∘ (𝑈‘𝑔))) |
| 19 | 5, 3 | tendopl2 40886 | . . . . 5 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑈‘𝑔) ∘ (𝑉‘𝑔))) |
| 20 | 10, 14, 11, 19 | syl3anc 1373 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑈‘𝑔) ∘ (𝑉‘𝑔))) |
| 21 | 5, 3 | tendopl2 40886 | . . . . 5 ⊢ ((𝑉 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → ((𝑉𝑃𝑈)‘𝑔) = ((𝑉‘𝑔) ∘ (𝑈‘𝑔))) |
| 22 | 14, 10, 11, 21 | syl3anc 1373 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑉𝑃𝑈)‘𝑔) = ((𝑉‘𝑔) ∘ (𝑈‘𝑔))) |
| 23 | 18, 20, 22 | 3eqtr4d 2776 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑉𝑃𝑈)‘𝑔)) |
| 24 | 23 | ralrimiva 3124 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → ∀𝑔 ∈ 𝑇 ((𝑈𝑃𝑉)‘𝑔) = ((𝑉𝑃𝑈)‘𝑔)) |
| 25 | 2, 3, 4 | tendoeq1 40873 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑈𝑃𝑉) ∈ 𝐸 ∧ (𝑉𝑃𝑈) ∈ 𝐸) ∧ ∀𝑔 ∈ 𝑇 ((𝑈𝑃𝑉)‘𝑔) = ((𝑉𝑃𝑈)‘𝑔)) → (𝑈𝑃𝑉) = (𝑉𝑃𝑈)) |
| 26 | 1, 6, 8, 24, 25 | syl121anc 1377 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) = (𝑉𝑃𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ↦ cmpt 5170 ∘ ccom 5618 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 HLchlt 39459 LHypclh 40093 LTrncltrn 40210 TEndoctendo 40861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-riotaBAD 39062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-undef 8203 df-map 8752 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-llines 39607 df-lplanes 39608 df-lvols 39609 df-lines 39610 df-psubsp 39612 df-pmap 39613 df-padd 39905 df-lhyp 40097 df-laut 40098 df-ldil 40213 df-ltrn 40214 df-trl 40268 df-tendo 40864 |
| This theorem is referenced by: tendo0plr 40901 tendoipl2 40907 erngdvlem2N 41098 erngdvlem2-rN 41106 dvhvaddcomN 41205 |
| Copyright terms: Public domain | W3C validator |