Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoplcom Structured version   Visualization version   GIF version

Theorem tendoplcom 38792
Description: The endomorphism sum operation is commutative. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHyp‘𝐾)
tendopl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendopl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendopl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
Assertion
Ref Expression
tendoplcom (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑉𝑃𝑈))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendoplcom
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 tendopl.h . . 3 𝐻 = (LHyp‘𝐾)
3 tendopl.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 tendopl.e . . 3 𝐸 = ((TEndo‘𝐾)‘𝑊)
5 tendopl.p . . 3 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
62, 3, 4, 5tendoplcl 38791 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) ∈ 𝐸)
72, 3, 4, 5tendoplcl 38791 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑈𝐸) → (𝑉𝑃𝑈) ∈ 𝐸)
873com23 1125 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑉𝑃𝑈) ∈ 𝐸)
9 simpl1 1190 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 simpl2 1191 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → 𝑈𝐸)
11 simpr 485 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → 𝑔𝑇)
122, 3, 4tendocl 38777 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑔𝑇) → (𝑈𝑔) ∈ 𝑇)
139, 10, 11, 12syl3anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → (𝑈𝑔) ∈ 𝑇)
14 simpl3 1192 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → 𝑉𝐸)
152, 3, 4tendocl 38777 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
169, 14, 11, 15syl3anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
172, 3ltrncom 38748 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝑔) ∈ 𝑇 ∧ (𝑉𝑔) ∈ 𝑇) → ((𝑈𝑔) ∘ (𝑉𝑔)) = ((𝑉𝑔) ∘ (𝑈𝑔)))
189, 13, 16, 17syl3anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → ((𝑈𝑔) ∘ (𝑉𝑔)) = ((𝑉𝑔) ∘ (𝑈𝑔)))
195, 3tendopl2 38787 . . . . 5 ((𝑈𝐸𝑉𝐸𝑔𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑈𝑔) ∘ (𝑉𝑔)))
2010, 14, 11, 19syl3anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑈𝑔) ∘ (𝑉𝑔)))
215, 3tendopl2 38787 . . . . 5 ((𝑉𝐸𝑈𝐸𝑔𝑇) → ((𝑉𝑃𝑈)‘𝑔) = ((𝑉𝑔) ∘ (𝑈𝑔)))
2214, 10, 11, 21syl3anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → ((𝑉𝑃𝑈)‘𝑔) = ((𝑉𝑔) ∘ (𝑈𝑔)))
2318, 20, 223eqtr4d 2790 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑉𝑃𝑈)‘𝑔))
2423ralrimiva 3110 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → ∀𝑔𝑇 ((𝑈𝑃𝑉)‘𝑔) = ((𝑉𝑃𝑈)‘𝑔))
252, 3, 4tendoeq1 38774 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑈𝑃𝑉) ∈ 𝐸 ∧ (𝑉𝑃𝑈) ∈ 𝐸) ∧ ∀𝑔𝑇 ((𝑈𝑃𝑉)‘𝑔) = ((𝑉𝑃𝑈)‘𝑔)) → (𝑈𝑃𝑉) = (𝑉𝑃𝑈))
261, 6, 8, 24, 25syl121anc 1374 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) = (𝑉𝑃𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wral 3066  cmpt 5162  ccom 5594  cfv 6432  (class class class)co 7271  cmpo 7273  HLchlt 37360  LHypclh 37994  LTrncltrn 38111  TEndoctendo 38762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-riotaBAD 36963
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-1st 7824  df-2nd 7825  df-undef 8080  df-map 8600  df-proset 18011  df-poset 18029  df-plt 18046  df-lub 18062  df-glb 18063  df-join 18064  df-meet 18065  df-p0 18141  df-p1 18142  df-lat 18148  df-clat 18215  df-oposet 37186  df-ol 37188  df-oml 37189  df-covers 37276  df-ats 37277  df-atl 37308  df-cvlat 37332  df-hlat 37361  df-llines 37508  df-lplanes 37509  df-lvols 37510  df-lines 37511  df-psubsp 37513  df-pmap 37514  df-padd 37806  df-lhyp 37998  df-laut 37999  df-ldil 38114  df-ltrn 38115  df-trl 38169  df-tendo 38765
This theorem is referenced by:  tendo0plr  38802  tendoipl2  38808  erngdvlem2N  38999  erngdvlem2-rN  39007  dvhvaddcomN  39106
  Copyright terms: Public domain W3C validator