| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendoplcom | Structured version Visualization version GIF version | ||
| Description: The endomorphism sum operation is commutative. (Contributed by NM, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendopl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendopl.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendopl.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| tendopl.p | ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
| Ref | Expression |
|---|---|
| tendoplcom | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) = (𝑉𝑃𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | tendopl.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | tendopl.t | . . 3 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | tendopl.e | . . 3 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 5 | tendopl.p | . . 3 ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
| 6 | 2, 3, 4, 5 | tendoplcl 40782 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) ∈ 𝐸) |
| 7 | 2, 3, 4, 5 | tendoplcl 40782 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑉 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸) → (𝑉𝑃𝑈) ∈ 𝐸) |
| 8 | 7 | 3com23 1126 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑉𝑃𝑈) ∈ 𝐸) |
| 9 | simpl1 1192 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 10 | simpl2 1193 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑈 ∈ 𝐸) | |
| 11 | simpr 484 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑔 ∈ 𝑇) | |
| 12 | 2, 3, 4 | tendocl 40768 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → (𝑈‘𝑔) ∈ 𝑇) |
| 13 | 9, 10, 11, 12 | syl3anc 1373 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑈‘𝑔) ∈ 𝑇) |
| 14 | simpl3 1194 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑉 ∈ 𝐸) | |
| 15 | 2, 3, 4 | tendocl 40768 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑉 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → (𝑉‘𝑔) ∈ 𝑇) |
| 16 | 9, 14, 11, 15 | syl3anc 1373 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑉‘𝑔) ∈ 𝑇) |
| 17 | 2, 3 | ltrncom 40739 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈‘𝑔) ∈ 𝑇 ∧ (𝑉‘𝑔) ∈ 𝑇) → ((𝑈‘𝑔) ∘ (𝑉‘𝑔)) = ((𝑉‘𝑔) ∘ (𝑈‘𝑔))) |
| 18 | 9, 13, 16, 17 | syl3anc 1373 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑈‘𝑔) ∘ (𝑉‘𝑔)) = ((𝑉‘𝑔) ∘ (𝑈‘𝑔))) |
| 19 | 5, 3 | tendopl2 40778 | . . . . 5 ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑈‘𝑔) ∘ (𝑉‘𝑔))) |
| 20 | 10, 14, 11, 19 | syl3anc 1373 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑈‘𝑔) ∘ (𝑉‘𝑔))) |
| 21 | 5, 3 | tendopl2 40778 | . . . . 5 ⊢ ((𝑉 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → ((𝑉𝑃𝑈)‘𝑔) = ((𝑉‘𝑔) ∘ (𝑈‘𝑔))) |
| 22 | 14, 10, 11, 21 | syl3anc 1373 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑉𝑃𝑈)‘𝑔) = ((𝑉‘𝑔) ∘ (𝑈‘𝑔))) |
| 23 | 18, 20, 22 | 3eqtr4d 2775 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑉𝑃𝑈)‘𝑔)) |
| 24 | 23 | ralrimiva 3126 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → ∀𝑔 ∈ 𝑇 ((𝑈𝑃𝑉)‘𝑔) = ((𝑉𝑃𝑈)‘𝑔)) |
| 25 | 2, 3, 4 | tendoeq1 40765 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑈𝑃𝑉) ∈ 𝐸 ∧ (𝑉𝑃𝑈) ∈ 𝐸) ∧ ∀𝑔 ∈ 𝑇 ((𝑈𝑃𝑉)‘𝑔) = ((𝑉𝑃𝑈)‘𝑔)) → (𝑈𝑃𝑉) = (𝑉𝑃𝑈)) |
| 26 | 1, 6, 8, 24, 25 | syl121anc 1377 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) = (𝑉𝑃𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ↦ cmpt 5191 ∘ ccom 5645 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 HLchlt 39350 LHypclh 39985 LTrncltrn 40102 TEndoctendo 40753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-riotaBAD 38953 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-undef 8255 df-map 8804 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-p1 18392 df-lat 18398 df-clat 18465 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-llines 39499 df-lplanes 39500 df-lvols 39501 df-lines 39502 df-psubsp 39504 df-pmap 39505 df-padd 39797 df-lhyp 39989 df-laut 39990 df-ldil 40105 df-ltrn 40106 df-trl 40160 df-tendo 40756 |
| This theorem is referenced by: tendo0plr 40793 tendoipl2 40799 erngdvlem2N 40990 erngdvlem2-rN 40998 dvhvaddcomN 41097 |
| Copyright terms: Public domain | W3C validator |