![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo0pl | Structured version Visualization version GIF version |
Description: Property of the additive identity endormorphism. (Contributed by NM, 12-Jun-2013.) |
Ref | Expression |
---|---|
tendo0.b | ⊢ 𝐵 = (Base‘𝐾) |
tendo0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendo0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendo0.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
tendo0.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
tendo0pl.p | ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
Ref | Expression |
---|---|
tendo0pl | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑂𝑃𝑆) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | tendo0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | tendo0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | tendo0.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | tendo0.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
6 | tendo0.o | . . . . 5 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
7 | 2, 3, 4, 5, 6 | tendo0cl 40773 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
8 | 7 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑂 ∈ 𝐸) |
9 | simpr 484 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑆 ∈ 𝐸) | |
10 | tendo0pl.p | . . . 4 ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
11 | 3, 4, 5, 10 | tendoplcl 40764 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑂 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸) → (𝑂𝑃𝑆) ∈ 𝐸) |
12 | 1, 8, 9, 11 | syl3anc 1370 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑂𝑃𝑆) ∈ 𝐸) |
13 | simpll 767 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
14 | 13, 7 | syl 17 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑂 ∈ 𝐸) |
15 | simplr 769 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑆 ∈ 𝐸) | |
16 | simpr 484 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑔 ∈ 𝑇) | |
17 | 10, 4 | tendopl2 40760 | . . . . 5 ⊢ ((𝑂 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → ((𝑂𝑃𝑆)‘𝑔) = ((𝑂‘𝑔) ∘ (𝑆‘𝑔))) |
18 | 14, 15, 16, 17 | syl3anc 1370 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑂𝑃𝑆)‘𝑔) = ((𝑂‘𝑔) ∘ (𝑆‘𝑔))) |
19 | 6, 2 | tendo02 40770 | . . . . . 6 ⊢ (𝑔 ∈ 𝑇 → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
20 | 19 | adantl 481 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
21 | 20 | coeq1d 5875 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑂‘𝑔) ∘ (𝑆‘𝑔)) = (( I ↾ 𝐵) ∘ (𝑆‘𝑔))) |
22 | 3, 4, 5 | tendocl 40750 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔) ∈ 𝑇) |
23 | 22 | 3expa 1117 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔) ∈ 𝑇) |
24 | 2, 3, 4 | ltrn1o 40107 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝑔) ∈ 𝑇) → (𝑆‘𝑔):𝐵–1-1-onto→𝐵) |
25 | 13, 23, 24 | syl2anc 584 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔):𝐵–1-1-onto→𝐵) |
26 | f1of 6849 | . . . . 5 ⊢ ((𝑆‘𝑔):𝐵–1-1-onto→𝐵 → (𝑆‘𝑔):𝐵⟶𝐵) | |
27 | fcoi2 6784 | . . . . 5 ⊢ ((𝑆‘𝑔):𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ (𝑆‘𝑔)) = (𝑆‘𝑔)) | |
28 | 25, 26, 27 | 3syl 18 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝐵) ∘ (𝑆‘𝑔)) = (𝑆‘𝑔)) |
29 | 18, 21, 28 | 3eqtrd 2779 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑂𝑃𝑆)‘𝑔) = (𝑆‘𝑔)) |
30 | 29 | ralrimiva 3144 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → ∀𝑔 ∈ 𝑇 ((𝑂𝑃𝑆)‘𝑔) = (𝑆‘𝑔)) |
31 | 3, 4, 5 | tendoeq1 40747 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑂𝑃𝑆) ∈ 𝐸 ∧ 𝑆 ∈ 𝐸) ∧ ∀𝑔 ∈ 𝑇 ((𝑂𝑃𝑆)‘𝑔) = (𝑆‘𝑔)) → (𝑂𝑃𝑆) = 𝑆) |
32 | 1, 12, 9, 30, 31 | syl121anc 1374 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑂𝑃𝑆) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ↦ cmpt 5231 I cid 5582 ↾ cres 5691 ∘ ccom 5693 ⟶wf 6559 –1-1-onto→wf1o 6562 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 Basecbs 17245 HLchlt 39332 LHypclh 39967 LTrncltrn 40084 TEndoctendo 40735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-riotaBAD 38935 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-undef 8297 df-map 8867 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-p1 18484 df-lat 18490 df-clat 18557 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 df-llines 39481 df-lplanes 39482 df-lvols 39483 df-lines 39484 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-lhyp 39971 df-laut 39972 df-ldil 40087 df-ltrn 40088 df-trl 40142 df-tendo 40738 |
This theorem is referenced by: tendo0plr 40775 erngdvlem1 40971 erngdvlem4 40974 erng0g 40977 erngdvlem1-rN 40979 erngdvlem4-rN 40982 dvh0g 41094 dvhopN 41099 diblss 41153 diblsmopel 41154 |
Copyright terms: Public domain | W3C validator |