Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0pl Structured version   Visualization version   GIF version

Theorem tendo0pl 39650
Description: Property of the additive identity endormorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendo0.b 𝐡 = (Baseβ€˜πΎ)
tendo0.h 𝐻 = (LHypβ€˜πΎ)
tendo0.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
tendo0.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
tendo0.o 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
tendo0pl.p 𝑃 = (𝑠 ∈ 𝐸, 𝑑 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))
Assertion
Ref Expression
tendo0pl (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ (𝑂𝑃𝑆) = 𝑆)
Distinct variable groups:   𝐡,𝑓   𝑇,𝑓   𝑑,𝑠,𝐸   𝑇,𝑠,𝑑,𝑓   𝑓,π‘Š,𝑠,𝑑
Allowed substitution hints:   𝐡(𝑑,𝑠)   𝑃(𝑑,𝑓,𝑠)   𝑆(𝑑,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑑,𝑓,𝑠)   𝐾(𝑑,𝑓,𝑠)   𝑂(𝑑,𝑓,𝑠)

Proof of Theorem tendo0pl
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 tendo0.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
3 tendo0.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
4 tendo0.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
5 tendo0.e . . . . 5 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
6 tendo0.o . . . . 5 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
72, 3, 4, 5, 6tendo0cl 39649 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝑂 ∈ 𝐸)
87adantr 481 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ 𝑂 ∈ 𝐸)
9 simpr 485 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ 𝑆 ∈ 𝐸)
10 tendo0pl.p . . . 4 𝑃 = (𝑠 ∈ 𝐸, 𝑑 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))
113, 4, 5, 10tendoplcl 39640 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑂 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸) β†’ (𝑂𝑃𝑆) ∈ 𝐸)
121, 8, 9, 11syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ (𝑂𝑃𝑆) ∈ 𝐸)
13 simpll 765 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
1413, 7syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ 𝑂 ∈ 𝐸)
15 simplr 767 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ 𝑆 ∈ 𝐸)
16 simpr 485 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ 𝑔 ∈ 𝑇)
1710, 4tendopl2 39636 . . . . 5 ((𝑂 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) β†’ ((𝑂𝑃𝑆)β€˜π‘”) = ((π‘‚β€˜π‘”) ∘ (π‘†β€˜π‘”)))
1814, 15, 16, 17syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ ((𝑂𝑃𝑆)β€˜π‘”) = ((π‘‚β€˜π‘”) ∘ (π‘†β€˜π‘”)))
196, 2tendo02 39646 . . . . . 6 (𝑔 ∈ 𝑇 β†’ (π‘‚β€˜π‘”) = ( I β†Ύ 𝐡))
2019adantl 482 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (π‘‚β€˜π‘”) = ( I β†Ύ 𝐡))
2120coeq1d 5859 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ ((π‘‚β€˜π‘”) ∘ (π‘†β€˜π‘”)) = (( I β†Ύ 𝐡) ∘ (π‘†β€˜π‘”)))
223, 4, 5tendocl 39626 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) β†’ (π‘†β€˜π‘”) ∈ 𝑇)
23223expa 1118 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (π‘†β€˜π‘”) ∈ 𝑇)
242, 3, 4ltrn1o 38983 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘†β€˜π‘”) ∈ 𝑇) β†’ (π‘†β€˜π‘”):𝐡–1-1-onto→𝐡)
2513, 23, 24syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (π‘†β€˜π‘”):𝐡–1-1-onto→𝐡)
26 f1of 6830 . . . . 5 ((π‘†β€˜π‘”):𝐡–1-1-onto→𝐡 β†’ (π‘†β€˜π‘”):𝐡⟢𝐡)
27 fcoi2 6763 . . . . 5 ((π‘†β€˜π‘”):𝐡⟢𝐡 β†’ (( I β†Ύ 𝐡) ∘ (π‘†β€˜π‘”)) = (π‘†β€˜π‘”))
2825, 26, 273syl 18 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (( I β†Ύ 𝐡) ∘ (π‘†β€˜π‘”)) = (π‘†β€˜π‘”))
2918, 21, 283eqtrd 2776 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ ((𝑂𝑃𝑆)β€˜π‘”) = (π‘†β€˜π‘”))
3029ralrimiva 3146 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ βˆ€π‘” ∈ 𝑇 ((𝑂𝑃𝑆)β€˜π‘”) = (π‘†β€˜π‘”))
313, 4, 5tendoeq1 39623 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑂𝑃𝑆) ∈ 𝐸 ∧ 𝑆 ∈ 𝐸) ∧ βˆ€π‘” ∈ 𝑇 ((𝑂𝑃𝑆)β€˜π‘”) = (π‘†β€˜π‘”)) β†’ (𝑂𝑃𝑆) = 𝑆)
321, 12, 9, 30, 31syl121anc 1375 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ (𝑂𝑃𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   ↦ cmpt 5230   I cid 5572   β†Ύ cres 5677   ∘ ccom 5679  βŸΆwf 6536  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  Basecbs 17140  HLchlt 38208  LHypclh 38843  LTrncltrn 38960  TEndoctendo 39611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-riotaBAD 37811
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-undef 8254  df-map 8818  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-llines 38357  df-lplanes 38358  df-lvols 38359  df-lines 38360  df-psubsp 38362  df-pmap 38363  df-padd 38655  df-lhyp 38847  df-laut 38848  df-ldil 38963  df-ltrn 38964  df-trl 39018  df-tendo 39614
This theorem is referenced by:  tendo0plr  39651  erngdvlem1  39847  erngdvlem4  39850  erng0g  39853  erngdvlem1-rN  39855  erngdvlem4-rN  39858  dvh0g  39970  dvhopN  39975  diblss  40029  diblsmopel  40030
  Copyright terms: Public domain W3C validator