![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo0pl | Structured version Visualization version GIF version |
Description: Property of the additive identity endormorphism. (Contributed by NM, 12-Jun-2013.) |
Ref | Expression |
---|---|
tendo0.b | ⊢ 𝐵 = (Base‘𝐾) |
tendo0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendo0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendo0.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
tendo0.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
tendo0pl.p | ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
Ref | Expression |
---|---|
tendo0pl | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑂𝑃𝑆) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | tendo0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | tendo0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | tendo0.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | tendo0.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
6 | tendo0.o | . . . . 5 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
7 | 2, 3, 4, 5, 6 | tendo0cl 40747 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
8 | 7 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑂 ∈ 𝐸) |
9 | simpr 484 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑆 ∈ 𝐸) | |
10 | tendo0pl.p | . . . 4 ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
11 | 3, 4, 5, 10 | tendoplcl 40738 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑂 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸) → (𝑂𝑃𝑆) ∈ 𝐸) |
12 | 1, 8, 9, 11 | syl3anc 1371 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑂𝑃𝑆) ∈ 𝐸) |
13 | simpll 766 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
14 | 13, 7 | syl 17 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑂 ∈ 𝐸) |
15 | simplr 768 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑆 ∈ 𝐸) | |
16 | simpr 484 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑔 ∈ 𝑇) | |
17 | 10, 4 | tendopl2 40734 | . . . . 5 ⊢ ((𝑂 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → ((𝑂𝑃𝑆)‘𝑔) = ((𝑂‘𝑔) ∘ (𝑆‘𝑔))) |
18 | 14, 15, 16, 17 | syl3anc 1371 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑂𝑃𝑆)‘𝑔) = ((𝑂‘𝑔) ∘ (𝑆‘𝑔))) |
19 | 6, 2 | tendo02 40744 | . . . . . 6 ⊢ (𝑔 ∈ 𝑇 → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
20 | 19 | adantl 481 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
21 | 20 | coeq1d 5886 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑂‘𝑔) ∘ (𝑆‘𝑔)) = (( I ↾ 𝐵) ∘ (𝑆‘𝑔))) |
22 | 3, 4, 5 | tendocl 40724 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔) ∈ 𝑇) |
23 | 22 | 3expa 1118 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔) ∈ 𝑇) |
24 | 2, 3, 4 | ltrn1o 40081 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝑔) ∈ 𝑇) → (𝑆‘𝑔):𝐵–1-1-onto→𝐵) |
25 | 13, 23, 24 | syl2anc 583 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔):𝐵–1-1-onto→𝐵) |
26 | f1of 6862 | . . . . 5 ⊢ ((𝑆‘𝑔):𝐵–1-1-onto→𝐵 → (𝑆‘𝑔):𝐵⟶𝐵) | |
27 | fcoi2 6796 | . . . . 5 ⊢ ((𝑆‘𝑔):𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ (𝑆‘𝑔)) = (𝑆‘𝑔)) | |
28 | 25, 26, 27 | 3syl 18 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝐵) ∘ (𝑆‘𝑔)) = (𝑆‘𝑔)) |
29 | 18, 21, 28 | 3eqtrd 2784 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑂𝑃𝑆)‘𝑔) = (𝑆‘𝑔)) |
30 | 29 | ralrimiva 3152 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → ∀𝑔 ∈ 𝑇 ((𝑂𝑃𝑆)‘𝑔) = (𝑆‘𝑔)) |
31 | 3, 4, 5 | tendoeq1 40721 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑂𝑃𝑆) ∈ 𝐸 ∧ 𝑆 ∈ 𝐸) ∧ ∀𝑔 ∈ 𝑇 ((𝑂𝑃𝑆)‘𝑔) = (𝑆‘𝑔)) → (𝑂𝑃𝑆) = 𝑆) |
32 | 1, 12, 9, 30, 31 | syl121anc 1375 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑂𝑃𝑆) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ↦ cmpt 5249 I cid 5592 ↾ cres 5702 ∘ ccom 5704 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 Basecbs 17258 HLchlt 39306 LHypclh 39941 LTrncltrn 40058 TEndoctendo 40709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-undef 8314 df-map 8886 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tendo 40712 |
This theorem is referenced by: tendo0plr 40749 erngdvlem1 40945 erngdvlem4 40948 erng0g 40951 erngdvlem1-rN 40953 erngdvlem4-rN 40956 dvh0g 41068 dvhopN 41073 diblss 41127 diblsmopel 41128 |
Copyright terms: Public domain | W3C validator |