Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0pl Structured version   Visualization version   GIF version

Theorem tendo0pl 40900
Description: Property of the additive identity endormorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendo0.b 𝐵 = (Base‘𝐾)
tendo0.h 𝐻 = (LHyp‘𝐾)
tendo0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendo0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendo0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
tendo0pl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
Assertion
Ref Expression
tendo0pl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑂𝑃𝑆) = 𝑆)
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓   𝑡,𝑠,𝐸   𝑇,𝑠,𝑡,𝑓   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝐵(𝑡,𝑠)   𝑃(𝑡,𝑓,𝑠)   𝑆(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   𝑂(𝑡,𝑓,𝑠)

Proof of Theorem tendo0pl
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 tendo0.b . . . . 5 𝐵 = (Base‘𝐾)
3 tendo0.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 tendo0.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 tendo0.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 tendo0.o . . . . 5 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
72, 3, 4, 5, 6tendo0cl 40899 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
87adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → 𝑂𝐸)
9 simpr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → 𝑆𝐸)
10 tendo0pl.p . . . 4 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
113, 4, 5, 10tendoplcl 40890 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑂𝐸𝑆𝐸) → (𝑂𝑃𝑆) ∈ 𝐸)
121, 8, 9, 11syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑂𝑃𝑆) ∈ 𝐸)
13 simpll 766 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
1413, 7syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → 𝑂𝐸)
15 simplr 768 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → 𝑆𝐸)
16 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → 𝑔𝑇)
1710, 4tendopl2 40886 . . . . 5 ((𝑂𝐸𝑆𝐸𝑔𝑇) → ((𝑂𝑃𝑆)‘𝑔) = ((𝑂𝑔) ∘ (𝑆𝑔)))
1814, 15, 16, 17syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → ((𝑂𝑃𝑆)‘𝑔) = ((𝑂𝑔) ∘ (𝑆𝑔)))
196, 2tendo02 40896 . . . . . 6 (𝑔𝑇 → (𝑂𝑔) = ( I ↾ 𝐵))
2019adantl 481 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑂𝑔) = ( I ↾ 𝐵))
2120coeq1d 5800 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → ((𝑂𝑔) ∘ (𝑆𝑔)) = (( I ↾ 𝐵) ∘ (𝑆𝑔)))
223, 4, 5tendocl 40876 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
23223expa 1118 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
242, 3, 4ltrn1o 40233 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑔) ∈ 𝑇) → (𝑆𝑔):𝐵1-1-onto𝐵)
2513, 23, 24syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑆𝑔):𝐵1-1-onto𝐵)
26 f1of 6763 . . . . 5 ((𝑆𝑔):𝐵1-1-onto𝐵 → (𝑆𝑔):𝐵𝐵)
27 fcoi2 6698 . . . . 5 ((𝑆𝑔):𝐵𝐵 → (( I ↾ 𝐵) ∘ (𝑆𝑔)) = (𝑆𝑔))
2825, 26, 273syl 18 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (( I ↾ 𝐵) ∘ (𝑆𝑔)) = (𝑆𝑔))
2918, 21, 283eqtrd 2770 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → ((𝑂𝑃𝑆)‘𝑔) = (𝑆𝑔))
3029ralrimiva 3124 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ∀𝑔𝑇 ((𝑂𝑃𝑆)‘𝑔) = (𝑆𝑔))
313, 4, 5tendoeq1 40873 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑂𝑃𝑆) ∈ 𝐸𝑆𝐸) ∧ ∀𝑔𝑇 ((𝑂𝑃𝑆)‘𝑔) = (𝑆𝑔)) → (𝑂𝑃𝑆) = 𝑆)
321, 12, 9, 30, 31syl121anc 1377 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑂𝑃𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  cmpt 5170   I cid 5508  cres 5616  ccom 5618  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17120  HLchlt 39459  LHypclh 40093  LTrncltrn 40210  TEndoctendo 40861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-riotaBAD 39062
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-lplanes 39608  df-lvols 39609  df-lines 39610  df-psubsp 39612  df-pmap 39613  df-padd 39905  df-lhyp 40097  df-laut 40098  df-ldil 40213  df-ltrn 40214  df-trl 40268  df-tendo 40864
This theorem is referenced by:  tendo0plr  40901  erngdvlem1  41097  erngdvlem4  41100  erng0g  41103  erngdvlem1-rN  41105  erngdvlem4-rN  41108  dvh0g  41220  dvhopN  41225  diblss  41279  diblsmopel  41280
  Copyright terms: Public domain W3C validator