Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0pl Structured version   Visualization version   GIF version

Theorem tendo0pl 39257
Description: Property of the additive identity endormorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendo0.b 𝐡 = (Baseβ€˜πΎ)
tendo0.h 𝐻 = (LHypβ€˜πΎ)
tendo0.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
tendo0.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
tendo0.o 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
tendo0pl.p 𝑃 = (𝑠 ∈ 𝐸, 𝑑 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))
Assertion
Ref Expression
tendo0pl (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ (𝑂𝑃𝑆) = 𝑆)
Distinct variable groups:   𝐡,𝑓   𝑇,𝑓   𝑑,𝑠,𝐸   𝑇,𝑠,𝑑,𝑓   𝑓,π‘Š,𝑠,𝑑
Allowed substitution hints:   𝐡(𝑑,𝑠)   𝑃(𝑑,𝑓,𝑠)   𝑆(𝑑,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑑,𝑓,𝑠)   𝐾(𝑑,𝑓,𝑠)   𝑂(𝑑,𝑓,𝑠)

Proof of Theorem tendo0pl
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 484 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 tendo0.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
3 tendo0.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
4 tendo0.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
5 tendo0.e . . . . 5 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
6 tendo0.o . . . . 5 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
72, 3, 4, 5, 6tendo0cl 39256 . . . 4 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝑂 ∈ 𝐸)
87adantr 482 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ 𝑂 ∈ 𝐸)
9 simpr 486 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ 𝑆 ∈ 𝐸)
10 tendo0pl.p . . . 4 𝑃 = (𝑠 ∈ 𝐸, 𝑑 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))
113, 4, 5, 10tendoplcl 39247 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑂 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸) β†’ (𝑂𝑃𝑆) ∈ 𝐸)
121, 8, 9, 11syl3anc 1372 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ (𝑂𝑃𝑆) ∈ 𝐸)
13 simpll 766 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
1413, 7syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ 𝑂 ∈ 𝐸)
15 simplr 768 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ 𝑆 ∈ 𝐸)
16 simpr 486 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ 𝑔 ∈ 𝑇)
1710, 4tendopl2 39243 . . . . 5 ((𝑂 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) β†’ ((𝑂𝑃𝑆)β€˜π‘”) = ((π‘‚β€˜π‘”) ∘ (π‘†β€˜π‘”)))
1814, 15, 16, 17syl3anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ ((𝑂𝑃𝑆)β€˜π‘”) = ((π‘‚β€˜π‘”) ∘ (π‘†β€˜π‘”)))
196, 2tendo02 39253 . . . . . 6 (𝑔 ∈ 𝑇 β†’ (π‘‚β€˜π‘”) = ( I β†Ύ 𝐡))
2019adantl 483 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (π‘‚β€˜π‘”) = ( I β†Ύ 𝐡))
2120coeq1d 5818 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ ((π‘‚β€˜π‘”) ∘ (π‘†β€˜π‘”)) = (( I β†Ύ 𝐡) ∘ (π‘†β€˜π‘”)))
223, 4, 5tendocl 39233 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) β†’ (π‘†β€˜π‘”) ∈ 𝑇)
23223expa 1119 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (π‘†β€˜π‘”) ∈ 𝑇)
242, 3, 4ltrn1o 38590 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘†β€˜π‘”) ∈ 𝑇) β†’ (π‘†β€˜π‘”):𝐡–1-1-onto→𝐡)
2513, 23, 24syl2anc 585 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (π‘†β€˜π‘”):𝐡–1-1-onto→𝐡)
26 f1of 6785 . . . . 5 ((π‘†β€˜π‘”):𝐡–1-1-onto→𝐡 β†’ (π‘†β€˜π‘”):𝐡⟢𝐡)
27 fcoi2 6718 . . . . 5 ((π‘†β€˜π‘”):𝐡⟢𝐡 β†’ (( I β†Ύ 𝐡) ∘ (π‘†β€˜π‘”)) = (π‘†β€˜π‘”))
2825, 26, 273syl 18 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ (( I β†Ύ 𝐡) ∘ (π‘†β€˜π‘”)) = (π‘†β€˜π‘”))
2918, 21, 283eqtrd 2781 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) β†’ ((𝑂𝑃𝑆)β€˜π‘”) = (π‘†β€˜π‘”))
3029ralrimiva 3144 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ βˆ€π‘” ∈ 𝑇 ((𝑂𝑃𝑆)β€˜π‘”) = (π‘†β€˜π‘”))
313, 4, 5tendoeq1 39230 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑂𝑃𝑆) ∈ 𝐸 ∧ 𝑆 ∈ 𝐸) ∧ βˆ€π‘” ∈ 𝑇 ((𝑂𝑃𝑆)β€˜π‘”) = (π‘†β€˜π‘”)) β†’ (𝑂𝑃𝑆) = 𝑆)
321, 12, 9, 30, 31syl121anc 1376 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) β†’ (𝑂𝑃𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3065   ↦ cmpt 5189   I cid 5531   β†Ύ cres 5636   ∘ ccom 5638  βŸΆwf 6493  β€“1-1-ontoβ†’wf1o 6496  β€˜cfv 6497  (class class class)co 7358   ∈ cmpo 7360  Basecbs 17084  HLchlt 37815  LHypclh 38450  LTrncltrn 38567  TEndoctendo 39218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-riotaBAD 37418
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-undef 8205  df-map 8768  df-proset 18185  df-poset 18203  df-plt 18220  df-lub 18236  df-glb 18237  df-join 18238  df-meet 18239  df-p0 18315  df-p1 18316  df-lat 18322  df-clat 18389  df-oposet 37641  df-ol 37643  df-oml 37644  df-covers 37731  df-ats 37732  df-atl 37763  df-cvlat 37787  df-hlat 37816  df-llines 37964  df-lplanes 37965  df-lvols 37966  df-lines 37967  df-psubsp 37969  df-pmap 37970  df-padd 38262  df-lhyp 38454  df-laut 38455  df-ldil 38570  df-ltrn 38571  df-trl 38625  df-tendo 39221
This theorem is referenced by:  tendo0plr  39258  erngdvlem1  39454  erngdvlem4  39457  erng0g  39460  erngdvlem1-rN  39462  erngdvlem4-rN  39465  dvh0g  39577  dvhopN  39582  diblss  39636  diblsmopel  39637
  Copyright terms: Public domain W3C validator