| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo0pl | Structured version Visualization version GIF version | ||
| Description: Property of the additive identity endormorphism. (Contributed by NM, 12-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendo0.b | ⊢ 𝐵 = (Base‘𝐾) |
| tendo0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendo0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendo0.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| tendo0.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| tendo0pl.p | ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
| Ref | Expression |
|---|---|
| tendo0pl | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑂𝑃𝑆) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | tendo0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | tendo0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | tendo0.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 5 | tendo0.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 6 | tendo0.o | . . . . 5 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 7 | 2, 3, 4, 5, 6 | tendo0cl 40773 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
| 8 | 7 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑂 ∈ 𝐸) |
| 9 | simpr 484 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑆 ∈ 𝐸) | |
| 10 | tendo0pl.p | . . . 4 ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
| 11 | 3, 4, 5, 10 | tendoplcl 40764 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑂 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸) → (𝑂𝑃𝑆) ∈ 𝐸) |
| 12 | 1, 8, 9, 11 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑂𝑃𝑆) ∈ 𝐸) |
| 13 | simpll 766 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 14 | 13, 7 | syl 17 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑂 ∈ 𝐸) |
| 15 | simplr 768 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑆 ∈ 𝐸) | |
| 16 | simpr 484 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑔 ∈ 𝑇) | |
| 17 | 10, 4 | tendopl2 40760 | . . . . 5 ⊢ ((𝑂 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → ((𝑂𝑃𝑆)‘𝑔) = ((𝑂‘𝑔) ∘ (𝑆‘𝑔))) |
| 18 | 14, 15, 16, 17 | syl3anc 1373 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑂𝑃𝑆)‘𝑔) = ((𝑂‘𝑔) ∘ (𝑆‘𝑔))) |
| 19 | 6, 2 | tendo02 40770 | . . . . . 6 ⊢ (𝑔 ∈ 𝑇 → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
| 20 | 19 | adantl 481 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
| 21 | 20 | coeq1d 5804 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑂‘𝑔) ∘ (𝑆‘𝑔)) = (( I ↾ 𝐵) ∘ (𝑆‘𝑔))) |
| 22 | 3, 4, 5 | tendocl 40750 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔) ∈ 𝑇) |
| 23 | 22 | 3expa 1118 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔) ∈ 𝑇) |
| 24 | 2, 3, 4 | ltrn1o 40107 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝑔) ∈ 𝑇) → (𝑆‘𝑔):𝐵–1-1-onto→𝐵) |
| 25 | 13, 23, 24 | syl2anc 584 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔):𝐵–1-1-onto→𝐵) |
| 26 | f1of 6764 | . . . . 5 ⊢ ((𝑆‘𝑔):𝐵–1-1-onto→𝐵 → (𝑆‘𝑔):𝐵⟶𝐵) | |
| 27 | fcoi2 6699 | . . . . 5 ⊢ ((𝑆‘𝑔):𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ (𝑆‘𝑔)) = (𝑆‘𝑔)) | |
| 28 | 25, 26, 27 | 3syl 18 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝐵) ∘ (𝑆‘𝑔)) = (𝑆‘𝑔)) |
| 29 | 18, 21, 28 | 3eqtrd 2768 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑂𝑃𝑆)‘𝑔) = (𝑆‘𝑔)) |
| 30 | 29 | ralrimiva 3121 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → ∀𝑔 ∈ 𝑇 ((𝑂𝑃𝑆)‘𝑔) = (𝑆‘𝑔)) |
| 31 | 3, 4, 5 | tendoeq1 40747 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑂𝑃𝑆) ∈ 𝐸 ∧ 𝑆 ∈ 𝐸) ∧ ∀𝑔 ∈ 𝑇 ((𝑂𝑃𝑆)‘𝑔) = (𝑆‘𝑔)) → (𝑂𝑃𝑆) = 𝑆) |
| 32 | 1, 12, 9, 30, 31 | syl121anc 1377 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑂𝑃𝑆) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5173 I cid 5513 ↾ cres 5621 ∘ ccom 5623 ⟶wf 6478 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 Basecbs 17120 HLchlt 39333 LHypclh 39967 LTrncltrn 40084 TEndoctendo 40735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-riotaBAD 38936 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-undef 8206 df-map 8755 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39159 df-ol 39161 df-oml 39162 df-covers 39249 df-ats 39250 df-atl 39281 df-cvlat 39305 df-hlat 39334 df-llines 39481 df-lplanes 39482 df-lvols 39483 df-lines 39484 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-lhyp 39971 df-laut 39972 df-ldil 40087 df-ltrn 40088 df-trl 40142 df-tendo 40738 |
| This theorem is referenced by: tendo0plr 40775 erngdvlem1 40971 erngdvlem4 40974 erng0g 40977 erngdvlem1-rN 40979 erngdvlem4-rN 40982 dvh0g 41094 dvhopN 41099 diblss 41153 diblsmopel 41154 |
| Copyright terms: Public domain | W3C validator |