Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0pl Structured version   Visualization version   GIF version

Theorem tendo0pl 40785
Description: Property of the additive identity endormorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendo0.b 𝐵 = (Base‘𝐾)
tendo0.h 𝐻 = (LHyp‘𝐾)
tendo0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendo0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendo0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
tendo0pl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
Assertion
Ref Expression
tendo0pl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑂𝑃𝑆) = 𝑆)
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓   𝑡,𝑠,𝐸   𝑇,𝑠,𝑡,𝑓   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝐵(𝑡,𝑠)   𝑃(𝑡,𝑓,𝑠)   𝑆(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   𝑂(𝑡,𝑓,𝑠)

Proof of Theorem tendo0pl
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 tendo0.b . . . . 5 𝐵 = (Base‘𝐾)
3 tendo0.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 tendo0.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 tendo0.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 tendo0.o . . . . 5 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
72, 3, 4, 5, 6tendo0cl 40784 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
87adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → 𝑂𝐸)
9 simpr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → 𝑆𝐸)
10 tendo0pl.p . . . 4 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
113, 4, 5, 10tendoplcl 40775 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑂𝐸𝑆𝐸) → (𝑂𝑃𝑆) ∈ 𝐸)
121, 8, 9, 11syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑂𝑃𝑆) ∈ 𝐸)
13 simpll 766 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
1413, 7syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → 𝑂𝐸)
15 simplr 768 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → 𝑆𝐸)
16 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → 𝑔𝑇)
1710, 4tendopl2 40771 . . . . 5 ((𝑂𝐸𝑆𝐸𝑔𝑇) → ((𝑂𝑃𝑆)‘𝑔) = ((𝑂𝑔) ∘ (𝑆𝑔)))
1814, 15, 16, 17syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → ((𝑂𝑃𝑆)‘𝑔) = ((𝑂𝑔) ∘ (𝑆𝑔)))
196, 2tendo02 40781 . . . . . 6 (𝑔𝑇 → (𝑂𝑔) = ( I ↾ 𝐵))
2019adantl 481 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑂𝑔) = ( I ↾ 𝐵))
2120coeq1d 5825 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → ((𝑂𝑔) ∘ (𝑆𝑔)) = (( I ↾ 𝐵) ∘ (𝑆𝑔)))
223, 4, 5tendocl 40761 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
23223expa 1118 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
242, 3, 4ltrn1o 40118 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑔) ∈ 𝑇) → (𝑆𝑔):𝐵1-1-onto𝐵)
2513, 23, 24syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑆𝑔):𝐵1-1-onto𝐵)
26 f1of 6800 . . . . 5 ((𝑆𝑔):𝐵1-1-onto𝐵 → (𝑆𝑔):𝐵𝐵)
27 fcoi2 6735 . . . . 5 ((𝑆𝑔):𝐵𝐵 → (( I ↾ 𝐵) ∘ (𝑆𝑔)) = (𝑆𝑔))
2825, 26, 273syl 18 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (( I ↾ 𝐵) ∘ (𝑆𝑔)) = (𝑆𝑔))
2918, 21, 283eqtrd 2768 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → ((𝑂𝑃𝑆)‘𝑔) = (𝑆𝑔))
3029ralrimiva 3125 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ∀𝑔𝑇 ((𝑂𝑃𝑆)‘𝑔) = (𝑆𝑔))
313, 4, 5tendoeq1 40758 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑂𝑃𝑆) ∈ 𝐸𝑆𝐸) ∧ ∀𝑔𝑇 ((𝑂𝑃𝑆)‘𝑔) = (𝑆𝑔)) → (𝑂𝑃𝑆) = 𝑆)
321, 12, 9, 30, 31syl121anc 1377 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑂𝑃𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cmpt 5188   I cid 5532  cres 5640  ccom 5642  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cmpo 7389  Basecbs 17179  HLchlt 39343  LHypclh 39978  LTrncltrn 40095  TEndoctendo 40746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-undef 8252  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-tendo 40749
This theorem is referenced by:  tendo0plr  40786  erngdvlem1  40982  erngdvlem4  40985  erng0g  40988  erngdvlem1-rN  40990  erngdvlem4-rN  40993  dvh0g  41105  dvhopN  41110  diblss  41164  diblsmopel  41165
  Copyright terms: Public domain W3C validator