Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0pl Structured version   Visualization version   GIF version

Theorem tendo0pl 40748
Description: Property of the additive identity endormorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendo0.b 𝐵 = (Base‘𝐾)
tendo0.h 𝐻 = (LHyp‘𝐾)
tendo0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendo0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendo0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
tendo0pl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
Assertion
Ref Expression
tendo0pl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑂𝑃𝑆) = 𝑆)
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓   𝑡,𝑠,𝐸   𝑇,𝑠,𝑡,𝑓   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝐵(𝑡,𝑠)   𝑃(𝑡,𝑓,𝑠)   𝑆(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   𝑂(𝑡,𝑓,𝑠)

Proof of Theorem tendo0pl
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 tendo0.b . . . . 5 𝐵 = (Base‘𝐾)
3 tendo0.h . . . . 5 𝐻 = (LHyp‘𝐾)
4 tendo0.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 tendo0.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 tendo0.o . . . . 5 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
72, 3, 4, 5, 6tendo0cl 40747 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
87adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → 𝑂𝐸)
9 simpr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → 𝑆𝐸)
10 tendo0pl.p . . . 4 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
113, 4, 5, 10tendoplcl 40738 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑂𝐸𝑆𝐸) → (𝑂𝑃𝑆) ∈ 𝐸)
121, 8, 9, 11syl3anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑂𝑃𝑆) ∈ 𝐸)
13 simpll 766 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
1413, 7syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → 𝑂𝐸)
15 simplr 768 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → 𝑆𝐸)
16 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → 𝑔𝑇)
1710, 4tendopl2 40734 . . . . 5 ((𝑂𝐸𝑆𝐸𝑔𝑇) → ((𝑂𝑃𝑆)‘𝑔) = ((𝑂𝑔) ∘ (𝑆𝑔)))
1814, 15, 16, 17syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → ((𝑂𝑃𝑆)‘𝑔) = ((𝑂𝑔) ∘ (𝑆𝑔)))
196, 2tendo02 40744 . . . . . 6 (𝑔𝑇 → (𝑂𝑔) = ( I ↾ 𝐵))
2019adantl 481 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑂𝑔) = ( I ↾ 𝐵))
2120coeq1d 5886 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → ((𝑂𝑔) ∘ (𝑆𝑔)) = (( I ↾ 𝐵) ∘ (𝑆𝑔)))
223, 4, 5tendocl 40724 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
23223expa 1118 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑆𝑔) ∈ 𝑇)
242, 3, 4ltrn1o 40081 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑔) ∈ 𝑇) → (𝑆𝑔):𝐵1-1-onto𝐵)
2513, 23, 24syl2anc 583 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (𝑆𝑔):𝐵1-1-onto𝐵)
26 f1of 6862 . . . . 5 ((𝑆𝑔):𝐵1-1-onto𝐵 → (𝑆𝑔):𝐵𝐵)
27 fcoi2 6796 . . . . 5 ((𝑆𝑔):𝐵𝐵 → (( I ↾ 𝐵) ∘ (𝑆𝑔)) = (𝑆𝑔))
2825, 26, 273syl 18 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → (( I ↾ 𝐵) ∘ (𝑆𝑔)) = (𝑆𝑔))
2918, 21, 283eqtrd 2784 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) ∧ 𝑔𝑇) → ((𝑂𝑃𝑆)‘𝑔) = (𝑆𝑔))
3029ralrimiva 3152 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ∀𝑔𝑇 ((𝑂𝑃𝑆)‘𝑔) = (𝑆𝑔))
313, 4, 5tendoeq1 40721 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑂𝑃𝑆) ∈ 𝐸𝑆𝐸) ∧ ∀𝑔𝑇 ((𝑂𝑃𝑆)‘𝑔) = (𝑆𝑔)) → (𝑂𝑃𝑆) = 𝑆)
321, 12, 9, 30, 31syl121anc 1375 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑂𝑃𝑆) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  cmpt 5249   I cid 5592  cres 5702  ccom 5704  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cmpo 7450  Basecbs 17258  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  TEndoctendo 40709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-undef 8314  df-map 8886  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-tendo 40712
This theorem is referenced by:  tendo0plr  40749  erngdvlem1  40945  erngdvlem4  40948  erng0g  40951  erngdvlem1-rN  40953  erngdvlem4-rN  40956  dvh0g  41068  dvhopN  41073  diblss  41127  diblsmopel  41128
  Copyright terms: Public domain W3C validator