![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo0pl | Structured version Visualization version GIF version |
Description: Property of the additive identity endormorphism. (Contributed by NM, 12-Jun-2013.) |
Ref | Expression |
---|---|
tendo0.b | ⊢ 𝐵 = (Base‘𝐾) |
tendo0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendo0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendo0.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
tendo0.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
tendo0pl.p | ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
Ref | Expression |
---|---|
tendo0pl | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑂𝑃𝑆) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 475 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | tendo0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
3 | tendo0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | tendo0.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
5 | tendo0.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
6 | tendo0.o | . . . . 5 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
7 | 2, 3, 4, 5, 6 | tendo0cl 36811 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
8 | 7 | adantr 473 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑂 ∈ 𝐸) |
9 | simpr 478 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑆 ∈ 𝐸) | |
10 | tendo0pl.p | . . . 4 ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) | |
11 | 3, 4, 5, 10 | tendoplcl 36802 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑂 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸) → (𝑂𝑃𝑆) ∈ 𝐸) |
12 | 1, 8, 9, 11 | syl3anc 1491 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑂𝑃𝑆) ∈ 𝐸) |
13 | simpll 784 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
14 | 13, 7 | syl 17 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑂 ∈ 𝐸) |
15 | simplr 786 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑆 ∈ 𝐸) | |
16 | simpr 478 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → 𝑔 ∈ 𝑇) | |
17 | 10, 4 | tendopl2 36798 | . . . . 5 ⊢ ((𝑂 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → ((𝑂𝑃𝑆)‘𝑔) = ((𝑂‘𝑔) ∘ (𝑆‘𝑔))) |
18 | 14, 15, 16, 17 | syl3anc 1491 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑂𝑃𝑆)‘𝑔) = ((𝑂‘𝑔) ∘ (𝑆‘𝑔))) |
19 | 6, 2 | tendo02 36808 | . . . . . 6 ⊢ (𝑔 ∈ 𝑇 → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
20 | 19 | adantl 474 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑂‘𝑔) = ( I ↾ 𝐵)) |
21 | 20 | coeq1d 5487 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑂‘𝑔) ∘ (𝑆‘𝑔)) = (( I ↾ 𝐵) ∘ (𝑆‘𝑔))) |
22 | 3, 4, 5 | tendocl 36788 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔) ∈ 𝑇) |
23 | 22 | 3expa 1148 | . . . . . 6 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔) ∈ 𝑇) |
24 | 2, 3, 4 | ltrn1o 36145 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆‘𝑔) ∈ 𝑇) → (𝑆‘𝑔):𝐵–1-1-onto→𝐵) |
25 | 13, 23, 24 | syl2anc 580 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (𝑆‘𝑔):𝐵–1-1-onto→𝐵) |
26 | f1of 6356 | . . . . 5 ⊢ ((𝑆‘𝑔):𝐵–1-1-onto→𝐵 → (𝑆‘𝑔):𝐵⟶𝐵) | |
27 | fcoi2 6294 | . . . . 5 ⊢ ((𝑆‘𝑔):𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ (𝑆‘𝑔)) = (𝑆‘𝑔)) | |
28 | 25, 26, 27 | 3syl 18 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → (( I ↾ 𝐵) ∘ (𝑆‘𝑔)) = (𝑆‘𝑔)) |
29 | 18, 21, 28 | 3eqtrd 2837 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) ∧ 𝑔 ∈ 𝑇) → ((𝑂𝑃𝑆)‘𝑔) = (𝑆‘𝑔)) |
30 | 29 | ralrimiva 3147 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → ∀𝑔 ∈ 𝑇 ((𝑂𝑃𝑆)‘𝑔) = (𝑆‘𝑔)) |
31 | 3, 4, 5 | tendoeq1 36785 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑂𝑃𝑆) ∈ 𝐸 ∧ 𝑆 ∈ 𝐸) ∧ ∀𝑔 ∈ 𝑇 ((𝑂𝑃𝑆)‘𝑔) = (𝑆‘𝑔)) → (𝑂𝑃𝑆) = 𝑆) |
32 | 1, 12, 9, 30, 31 | syl121anc 1495 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑂𝑃𝑆) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ↦ cmpt 4922 I cid 5219 ↾ cres 5314 ∘ ccom 5316 ⟶wf 6097 –1-1-onto→wf1o 6100 ‘cfv 6101 (class class class)co 6878 ↦ cmpt2 6880 Basecbs 16184 HLchlt 35371 LHypclh 36005 LTrncltrn 36122 TEndoctendo 36773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-riotaBAD 34974 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-1st 7401 df-2nd 7402 df-undef 7637 df-map 8097 df-proset 17243 df-poset 17261 df-plt 17273 df-lub 17289 df-glb 17290 df-join 17291 df-meet 17292 df-p0 17354 df-p1 17355 df-lat 17361 df-clat 17423 df-oposet 35197 df-ol 35199 df-oml 35200 df-covers 35287 df-ats 35288 df-atl 35319 df-cvlat 35343 df-hlat 35372 df-llines 35519 df-lplanes 35520 df-lvols 35521 df-lines 35522 df-psubsp 35524 df-pmap 35525 df-padd 35817 df-lhyp 36009 df-laut 36010 df-ldil 36125 df-ltrn 36126 df-trl 36180 df-tendo 36776 |
This theorem is referenced by: tendo0plr 36813 erngdvlem1 37009 erngdvlem4 37012 erng0g 37015 erngdvlem1-rN 37017 erngdvlem4-rN 37020 dvh0g 37132 dvhopN 37137 diblss 37191 diblsmopel 37192 |
Copyright terms: Public domain | W3C validator |