| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 2 | | simpr1 1194 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → 𝑆 ∈ 𝐸) |
| 3 | | simpr2 1195 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → 𝑈 ∈ 𝐸) |
| 4 | | tendopl.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 5 | | tendopl.t |
. . . . 5
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 6 | | tendopl.e |
. . . . 5
⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| 7 | | tendopl.p |
. . . . 5
⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
| 8 | 4, 5, 6, 7 | tendoplcl 40784 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸) → (𝑆𝑃𝑈) ∈ 𝐸) |
| 9 | 1, 2, 3, 8 | syl3anc 1372 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → (𝑆𝑃𝑈) ∈ 𝐸) |
| 10 | | simpr3 1196 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → 𝑉 ∈ 𝐸) |
| 11 | 4, 5, 6, 7 | tendoplcl 40784 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆𝑃𝑈) ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → ((𝑆𝑃𝑈)𝑃𝑉) ∈ 𝐸) |
| 12 | 1, 9, 10, 11 | syl3anc 1372 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → ((𝑆𝑃𝑈)𝑃𝑉) ∈ 𝐸) |
| 13 | 4, 5, 6, 7 | tendoplcl 40784 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) ∈ 𝐸) |
| 14 | 1, 3, 10, 13 | syl3anc 1372 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → (𝑈𝑃𝑉) ∈ 𝐸) |
| 15 | 4, 5, 6, 7 | tendoplcl 40784 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ (𝑈𝑃𝑉) ∈ 𝐸) → (𝑆𝑃(𝑈𝑃𝑉)) ∈ 𝐸) |
| 16 | 1, 2, 14, 15 | syl3anc 1372 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → (𝑆𝑃(𝑈𝑃𝑉)) ∈ 𝐸) |
| 17 | | coass 6284 |
. . . . 5
⊢ (((𝑆‘𝑔) ∘ (𝑈‘𝑔)) ∘ (𝑉‘𝑔)) = ((𝑆‘𝑔) ∘ ((𝑈‘𝑔) ∘ (𝑉‘𝑔))) |
| 18 | | simplr1 1215 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) → 𝑆 ∈ 𝐸) |
| 19 | | simplr2 1216 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) → 𝑈 ∈ 𝐸) |
| 20 | | simpr 484 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) → 𝑔 ∈ 𝑇) |
| 21 | 7, 5 | tendopl2 40780 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → ((𝑆𝑃𝑈)‘𝑔) = ((𝑆‘𝑔) ∘ (𝑈‘𝑔))) |
| 22 | 18, 19, 20, 21 | syl3anc 1372 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) → ((𝑆𝑃𝑈)‘𝑔) = ((𝑆‘𝑔) ∘ (𝑈‘𝑔))) |
| 23 | 22 | coeq1d 5871 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) → (((𝑆𝑃𝑈)‘𝑔) ∘ (𝑉‘𝑔)) = (((𝑆‘𝑔) ∘ (𝑈‘𝑔)) ∘ (𝑉‘𝑔))) |
| 24 | | simplr3 1217 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) → 𝑉 ∈ 𝐸) |
| 25 | 7, 5 | tendopl2 40780 |
. . . . . . 7
⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑈‘𝑔) ∘ (𝑉‘𝑔))) |
| 26 | 19, 24, 20, 25 | syl3anc 1372 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑈‘𝑔) ∘ (𝑉‘𝑔))) |
| 27 | 26 | coeq2d 5872 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) → ((𝑆‘𝑔) ∘ ((𝑈𝑃𝑉)‘𝑔)) = ((𝑆‘𝑔) ∘ ((𝑈‘𝑔) ∘ (𝑉‘𝑔)))) |
| 28 | 17, 23, 27 | 3eqtr4a 2802 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) → (((𝑆𝑃𝑈)‘𝑔) ∘ (𝑉‘𝑔)) = ((𝑆‘𝑔) ∘ ((𝑈𝑃𝑉)‘𝑔))) |
| 29 | 9 | adantr 480 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) → (𝑆𝑃𝑈) ∈ 𝐸) |
| 30 | 7, 5 | tendopl2 40780 |
. . . . 5
⊢ (((𝑆𝑃𝑈) ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → (((𝑆𝑃𝑈)𝑃𝑉)‘𝑔) = (((𝑆𝑃𝑈)‘𝑔) ∘ (𝑉‘𝑔))) |
| 31 | 29, 24, 20, 30 | syl3anc 1372 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) → (((𝑆𝑃𝑈)𝑃𝑉)‘𝑔) = (((𝑆𝑃𝑈)‘𝑔) ∘ (𝑉‘𝑔))) |
| 32 | 14 | adantr 480 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) → (𝑈𝑃𝑉) ∈ 𝐸) |
| 33 | 7, 5 | tendopl2 40780 |
. . . . 5
⊢ ((𝑆 ∈ 𝐸 ∧ (𝑈𝑃𝑉) ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) → ((𝑆𝑃(𝑈𝑃𝑉))‘𝑔) = ((𝑆‘𝑔) ∘ ((𝑈𝑃𝑉)‘𝑔))) |
| 34 | 18, 32, 20, 33 | syl3anc 1372 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) → ((𝑆𝑃(𝑈𝑃𝑉))‘𝑔) = ((𝑆‘𝑔) ∘ ((𝑈𝑃𝑉)‘𝑔))) |
| 35 | 28, 31, 34 | 3eqtr4d 2786 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) → (((𝑆𝑃𝑈)𝑃𝑉)‘𝑔) = ((𝑆𝑃(𝑈𝑃𝑉))‘𝑔)) |
| 36 | 35 | ralrimiva 3145 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → ∀𝑔 ∈ 𝑇 (((𝑆𝑃𝑈)𝑃𝑉)‘𝑔) = ((𝑆𝑃(𝑈𝑃𝑉))‘𝑔)) |
| 37 | 4, 5, 6 | tendoeq1 40767 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (((𝑆𝑃𝑈)𝑃𝑉) ∈ 𝐸 ∧ (𝑆𝑃(𝑈𝑃𝑉)) ∈ 𝐸) ∧ ∀𝑔 ∈ 𝑇 (((𝑆𝑃𝑈)𝑃𝑉)‘𝑔) = ((𝑆𝑃(𝑈𝑃𝑉))‘𝑔)) → ((𝑆𝑃𝑈)𝑃𝑉) = (𝑆𝑃(𝑈𝑃𝑉))) |
| 38 | 1, 12, 16, 36, 37 | syl121anc 1376 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → ((𝑆𝑃𝑈)𝑃𝑉) = (𝑆𝑃(𝑈𝑃𝑉))) |