Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoplass Structured version   Visualization version   GIF version

Theorem tendoplass 39957
Description: The endomorphism sum operation is associative. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHypβ€˜πΎ)
tendopl.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
tendopl.e 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
tendopl.p 𝑃 = (𝑠 ∈ 𝐸, 𝑑 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))
Assertion
Ref Expression
tendoplass (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) β†’ ((π‘†π‘ƒπ‘ˆ)𝑃𝑉) = (𝑆𝑃(π‘ˆπ‘ƒπ‘‰)))
Distinct variable groups:   𝑑,𝑠,𝐸   𝑓,𝑠,𝑑,𝑇   𝑓,π‘Š,𝑠,𝑑
Allowed substitution hints:   𝑃(𝑑,𝑓,𝑠)   𝑆(𝑑,𝑓,𝑠)   π‘ˆ(𝑑,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑑,𝑓,𝑠)   𝐾(𝑑,𝑓,𝑠)   𝑉(𝑑,𝑓,𝑠)

Proof of Theorem tendoplass
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 481 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simpr1 1192 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) β†’ 𝑆 ∈ 𝐸)
3 simpr2 1193 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) β†’ π‘ˆ ∈ 𝐸)
4 tendopl.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
5 tendopl.t . . . . 5 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
6 tendopl.e . . . . 5 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
7 tendopl.p . . . . 5 𝑃 = (𝑠 ∈ 𝐸, 𝑑 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘ β€˜π‘“) ∘ (π‘‘β€˜π‘“))))
84, 5, 6, 7tendoplcl 39955 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸) β†’ (π‘†π‘ƒπ‘ˆ) ∈ 𝐸)
91, 2, 3, 8syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) β†’ (π‘†π‘ƒπ‘ˆ) ∈ 𝐸)
10 simpr3 1194 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) β†’ 𝑉 ∈ 𝐸)
114, 5, 6, 7tendoplcl 39955 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘†π‘ƒπ‘ˆ) ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) β†’ ((π‘†π‘ƒπ‘ˆ)𝑃𝑉) ∈ 𝐸)
121, 9, 10, 11syl3anc 1369 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) β†’ ((π‘†π‘ƒπ‘ˆ)𝑃𝑉) ∈ 𝐸)
134, 5, 6, 7tendoplcl 39955 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) β†’ (π‘ˆπ‘ƒπ‘‰) ∈ 𝐸)
141, 3, 10, 13syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) β†’ (π‘ˆπ‘ƒπ‘‰) ∈ 𝐸)
154, 5, 6, 7tendoplcl 39955 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ (π‘ˆπ‘ƒπ‘‰) ∈ 𝐸) β†’ (𝑆𝑃(π‘ˆπ‘ƒπ‘‰)) ∈ 𝐸)
161, 2, 14, 15syl3anc 1369 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) β†’ (𝑆𝑃(π‘ˆπ‘ƒπ‘‰)) ∈ 𝐸)
17 coass 6263 . . . . 5 (((π‘†β€˜π‘”) ∘ (π‘ˆβ€˜π‘”)) ∘ (π‘‰β€˜π‘”)) = ((π‘†β€˜π‘”) ∘ ((π‘ˆβ€˜π‘”) ∘ (π‘‰β€˜π‘”)))
18 simplr1 1213 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) β†’ 𝑆 ∈ 𝐸)
19 simplr2 1214 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) β†’ π‘ˆ ∈ 𝐸)
20 simpr 483 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) β†’ 𝑔 ∈ 𝑇)
217, 5tendopl2 39951 . . . . . . 7 ((𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) β†’ ((π‘†π‘ƒπ‘ˆ)β€˜π‘”) = ((π‘†β€˜π‘”) ∘ (π‘ˆβ€˜π‘”)))
2218, 19, 20, 21syl3anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) β†’ ((π‘†π‘ƒπ‘ˆ)β€˜π‘”) = ((π‘†β€˜π‘”) ∘ (π‘ˆβ€˜π‘”)))
2322coeq1d 5860 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) β†’ (((π‘†π‘ƒπ‘ˆ)β€˜π‘”) ∘ (π‘‰β€˜π‘”)) = (((π‘†β€˜π‘”) ∘ (π‘ˆβ€˜π‘”)) ∘ (π‘‰β€˜π‘”)))
24 simplr3 1215 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) β†’ 𝑉 ∈ 𝐸)
257, 5tendopl2 39951 . . . . . . 7 ((π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) β†’ ((π‘ˆπ‘ƒπ‘‰)β€˜π‘”) = ((π‘ˆβ€˜π‘”) ∘ (π‘‰β€˜π‘”)))
2619, 24, 20, 25syl3anc 1369 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) β†’ ((π‘ˆπ‘ƒπ‘‰)β€˜π‘”) = ((π‘ˆβ€˜π‘”) ∘ (π‘‰β€˜π‘”)))
2726coeq2d 5861 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) β†’ ((π‘†β€˜π‘”) ∘ ((π‘ˆπ‘ƒπ‘‰)β€˜π‘”)) = ((π‘†β€˜π‘”) ∘ ((π‘ˆβ€˜π‘”) ∘ (π‘‰β€˜π‘”))))
2817, 23, 273eqtr4a 2796 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) β†’ (((π‘†π‘ƒπ‘ˆ)β€˜π‘”) ∘ (π‘‰β€˜π‘”)) = ((π‘†β€˜π‘”) ∘ ((π‘ˆπ‘ƒπ‘‰)β€˜π‘”)))
299adantr 479 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) β†’ (π‘†π‘ƒπ‘ˆ) ∈ 𝐸)
307, 5tendopl2 39951 . . . . 5 (((π‘†π‘ƒπ‘ˆ) ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) β†’ (((π‘†π‘ƒπ‘ˆ)𝑃𝑉)β€˜π‘”) = (((π‘†π‘ƒπ‘ˆ)β€˜π‘”) ∘ (π‘‰β€˜π‘”)))
3129, 24, 20, 30syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) β†’ (((π‘†π‘ƒπ‘ˆ)𝑃𝑉)β€˜π‘”) = (((π‘†π‘ƒπ‘ˆ)β€˜π‘”) ∘ (π‘‰β€˜π‘”)))
3214adantr 479 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) β†’ (π‘ˆπ‘ƒπ‘‰) ∈ 𝐸)
337, 5tendopl2 39951 . . . . 5 ((𝑆 ∈ 𝐸 ∧ (π‘ˆπ‘ƒπ‘‰) ∈ 𝐸 ∧ 𝑔 ∈ 𝑇) β†’ ((𝑆𝑃(π‘ˆπ‘ƒπ‘‰))β€˜π‘”) = ((π‘†β€˜π‘”) ∘ ((π‘ˆπ‘ƒπ‘‰)β€˜π‘”)))
3418, 32, 20, 33syl3anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) β†’ ((𝑆𝑃(π‘ˆπ‘ƒπ‘‰))β€˜π‘”) = ((π‘†β€˜π‘”) ∘ ((π‘ˆπ‘ƒπ‘‰)β€˜π‘”)))
3528, 31, 343eqtr4d 2780 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) ∧ 𝑔 ∈ 𝑇) β†’ (((π‘†π‘ƒπ‘ˆ)𝑃𝑉)β€˜π‘”) = ((𝑆𝑃(π‘ˆπ‘ƒπ‘‰))β€˜π‘”))
3635ralrimiva 3144 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) β†’ βˆ€π‘” ∈ 𝑇 (((π‘†π‘ƒπ‘ˆ)𝑃𝑉)β€˜π‘”) = ((𝑆𝑃(π‘ˆπ‘ƒπ‘‰))β€˜π‘”))
374, 5, 6tendoeq1 39938 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (((π‘†π‘ƒπ‘ˆ)𝑃𝑉) ∈ 𝐸 ∧ (𝑆𝑃(π‘ˆπ‘ƒπ‘‰)) ∈ 𝐸) ∧ βˆ€π‘” ∈ 𝑇 (((π‘†π‘ƒπ‘ˆ)𝑃𝑉)β€˜π‘”) = ((𝑆𝑃(π‘ˆπ‘ƒπ‘‰))β€˜π‘”)) β†’ ((π‘†π‘ƒπ‘ˆ)𝑃𝑉) = (𝑆𝑃(π‘ˆπ‘ƒπ‘‰)))
381, 12, 16, 36, 37syl121anc 1373 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ π‘ˆ ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) β†’ ((π‘†π‘ƒπ‘ˆ)𝑃𝑉) = (𝑆𝑃(π‘ˆπ‘ƒπ‘‰)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059   ↦ cmpt 5230   ∘ ccom 5679  β€˜cfv 6542  (class class class)co 7411   ∈ cmpo 7413  HLchlt 38523  LHypclh 39158  LTrncltrn 39275  TEndoctendo 39926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-riotaBAD 38126
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-undef 8260  df-map 8824  df-proset 18252  df-poset 18270  df-plt 18287  df-lub 18303  df-glb 18304  df-join 18305  df-meet 18306  df-p0 18382  df-p1 18383  df-lat 18389  df-clat 18456  df-oposet 38349  df-ol 38351  df-oml 38352  df-covers 38439  df-ats 38440  df-atl 38471  df-cvlat 38495  df-hlat 38524  df-llines 38672  df-lplanes 38673  df-lvols 38674  df-lines 38675  df-psubsp 38677  df-pmap 38678  df-padd 38970  df-lhyp 39162  df-laut 39163  df-ldil 39278  df-ltrn 39279  df-trl 39333  df-tendo 39929
This theorem is referenced by:  erngdvlem1  40162  erngdvlem1-rN  40170
  Copyright terms: Public domain W3C validator