Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoplass Structured version   Visualization version   GIF version

Theorem tendoplass 36858
Description: The endomorphism sum operation is associative. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHyp‘𝐾)
tendopl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendopl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendopl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
Assertion
Ref Expression
tendoplass (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑃𝑈)𝑃𝑉) = (𝑆𝑃(𝑈𝑃𝑉)))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑆(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendoplass
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 476 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpr1 1254 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑆𝐸)
3 simpr2 1256 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑈𝐸)
4 tendopl.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 tendopl.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 tendopl.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
7 tendopl.p . . . . 5 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
84, 5, 6, 7tendoplcl 36856 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑈𝐸) → (𝑆𝑃𝑈) ∈ 𝐸)
91, 2, 3, 8syl3anc 1496 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆𝑃𝑈) ∈ 𝐸)
10 simpr3 1258 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑉𝐸)
114, 5, 6, 7tendoplcl 36856 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑃𝑈) ∈ 𝐸𝑉𝐸) → ((𝑆𝑃𝑈)𝑃𝑉) ∈ 𝐸)
121, 9, 10, 11syl3anc 1496 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑃𝑈)𝑃𝑉) ∈ 𝐸)
134, 5, 6, 7tendoplcl 36856 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑃𝑉) ∈ 𝐸)
141, 3, 10, 13syl3anc 1496 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑈𝑃𝑉) ∈ 𝐸)
154, 5, 6, 7tendoplcl 36856 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝑈𝑃𝑉) ∈ 𝐸) → (𝑆𝑃(𝑈𝑃𝑉)) ∈ 𝐸)
161, 2, 14, 15syl3anc 1496 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆𝑃(𝑈𝑃𝑉)) ∈ 𝐸)
17 coass 5895 . . . . 5 (((𝑆𝑔) ∘ (𝑈𝑔)) ∘ (𝑉𝑔)) = ((𝑆𝑔) ∘ ((𝑈𝑔) ∘ (𝑉𝑔)))
18 simplr1 1281 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑆𝐸)
19 simplr2 1283 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑈𝐸)
20 simpr 479 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑔𝑇)
217, 5tendopl2 36852 . . . . . . 7 ((𝑆𝐸𝑈𝐸𝑔𝑇) → ((𝑆𝑃𝑈)‘𝑔) = ((𝑆𝑔) ∘ (𝑈𝑔)))
2218, 19, 20, 21syl3anc 1496 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆𝑃𝑈)‘𝑔) = ((𝑆𝑔) ∘ (𝑈𝑔)))
2322coeq1d 5516 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑃𝑈)‘𝑔) ∘ (𝑉𝑔)) = (((𝑆𝑔) ∘ (𝑈𝑔)) ∘ (𝑉𝑔)))
24 simplr3 1285 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑉𝐸)
257, 5tendopl2 36852 . . . . . . 7 ((𝑈𝐸𝑉𝐸𝑔𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑈𝑔) ∘ (𝑉𝑔)))
2619, 24, 20, 25syl3anc 1496 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑈𝑃𝑉)‘𝑔) = ((𝑈𝑔) ∘ (𝑉𝑔)))
2726coeq2d 5517 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆𝑔) ∘ ((𝑈𝑃𝑉)‘𝑔)) = ((𝑆𝑔) ∘ ((𝑈𝑔) ∘ (𝑉𝑔))))
2817, 23, 273eqtr4a 2887 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑃𝑈)‘𝑔) ∘ (𝑉𝑔)) = ((𝑆𝑔) ∘ ((𝑈𝑃𝑉)‘𝑔)))
299adantr 474 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑆𝑃𝑈) ∈ 𝐸)
307, 5tendopl2 36852 . . . . 5 (((𝑆𝑃𝑈) ∈ 𝐸𝑉𝐸𝑔𝑇) → (((𝑆𝑃𝑈)𝑃𝑉)‘𝑔) = (((𝑆𝑃𝑈)‘𝑔) ∘ (𝑉𝑔)))
3129, 24, 20, 30syl3anc 1496 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑃𝑈)𝑃𝑉)‘𝑔) = (((𝑆𝑃𝑈)‘𝑔) ∘ (𝑉𝑔)))
3214adantr 474 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑈𝑃𝑉) ∈ 𝐸)
337, 5tendopl2 36852 . . . . 5 ((𝑆𝐸 ∧ (𝑈𝑃𝑉) ∈ 𝐸𝑔𝑇) → ((𝑆𝑃(𝑈𝑃𝑉))‘𝑔) = ((𝑆𝑔) ∘ ((𝑈𝑃𝑉)‘𝑔)))
3418, 32, 20, 33syl3anc 1496 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆𝑃(𝑈𝑃𝑉))‘𝑔) = ((𝑆𝑔) ∘ ((𝑈𝑃𝑉)‘𝑔)))
3528, 31, 343eqtr4d 2871 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑃𝑈)𝑃𝑉)‘𝑔) = ((𝑆𝑃(𝑈𝑃𝑉))‘𝑔))
3635ralrimiva 3175 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ∀𝑔𝑇 (((𝑆𝑃𝑈)𝑃𝑉)‘𝑔) = ((𝑆𝑃(𝑈𝑃𝑉))‘𝑔))
374, 5, 6tendoeq1 36839 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((𝑆𝑃𝑈)𝑃𝑉) ∈ 𝐸 ∧ (𝑆𝑃(𝑈𝑃𝑉)) ∈ 𝐸) ∧ ∀𝑔𝑇 (((𝑆𝑃𝑈)𝑃𝑉)‘𝑔) = ((𝑆𝑃(𝑈𝑃𝑉))‘𝑔)) → ((𝑆𝑃𝑈)𝑃𝑉) = (𝑆𝑃(𝑈𝑃𝑉)))
381, 12, 16, 36, 37syl121anc 1500 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑃𝑈)𝑃𝑉) = (𝑆𝑃(𝑈𝑃𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  wral 3117  cmpt 4952  ccom 5346  cfv 6123  (class class class)co 6905  cmpt2 6907  HLchlt 35425  LHypclh 36059  LTrncltrn 36176  TEndoctendo 36827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-riotaBAD 35028
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-1st 7428  df-2nd 7429  df-undef 7664  df-map 8124  df-proset 17281  df-poset 17299  df-plt 17311  df-lub 17327  df-glb 17328  df-join 17329  df-meet 17330  df-p0 17392  df-p1 17393  df-lat 17399  df-clat 17461  df-oposet 35251  df-ol 35253  df-oml 35254  df-covers 35341  df-ats 35342  df-atl 35373  df-cvlat 35397  df-hlat 35426  df-llines 35573  df-lplanes 35574  df-lvols 35575  df-lines 35576  df-psubsp 35578  df-pmap 35579  df-padd 35871  df-lhyp 36063  df-laut 36064  df-ldil 36179  df-ltrn 36180  df-trl 36234  df-tendo 36830
This theorem is referenced by:  erngdvlem1  37063  erngdvlem1-rN  37071
  Copyright terms: Public domain W3C validator