Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  termopropd Structured version   Visualization version   GIF version

Theorem termopropd 48967
Description: Two structures with the same base, hom-sets and composition operation have the same terminal objects. (Contributed by Zhi Wang, 26-Oct-2025.)
Hypotheses
Ref Expression
initopropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
initopropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
termopropd (𝜑 → (TermO‘𝐶) = (TermO‘𝐷))

Proof of Theorem termopropd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 initopropd.1 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
21adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (Homf𝐶) = (Homf𝐷))
3 initopropd.2 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
43adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (compf𝐶) = (compf𝐷))
5 simpr 484 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → ¬ 𝐶 ∈ V)
62, 4, 5termopropdlem 48964 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (TermO‘𝐶) = (TermO‘𝐷))
71adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf𝐶) = (Homf𝐷))
87eqcomd 2740 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf𝐷) = (Homf𝐶))
93adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (compf𝐶) = (compf𝐷))
109eqcomd 2740 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (compf𝐷) = (compf𝐶))
11 simpr 484 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → ¬ 𝐷 ∈ V)
128, 10, 11termopropdlem 48964 . . 3 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (TermO‘𝐷) = (TermO‘𝐶))
1312eqcomd 2740 . 2 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (TermO‘𝐶) = (TermO‘𝐷))
141adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (Homf𝐶) = (Homf𝐷))
1514adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Homf𝐶) = (Homf𝐷))
16 eqid 2734 . . . . . . . . . . . . . . 15 (Hom ‘𝐶) = (Hom ‘𝐶)
17 eqid 2734 . . . . . . . . . . . . . . 15 (Hom ‘𝐷) = (Hom ‘𝐷)
18 eqidd 2735 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Base‘𝐶) = (Base‘𝐶))
1915homfeqbas 17693 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Base‘𝐶) = (Base‘𝐷))
2016, 17, 18, 19homfeq 17691 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((Homf𝐶) = (Homf𝐷) ↔ ∀𝑏 ∈ (Base‘𝐶)∀𝑎 ∈ (Base‘𝐶)(𝑏(Hom ‘𝐶)𝑎) = (𝑏(Hom ‘𝐷)𝑎)))
21 ralcom 3268 . . . . . . . . . . . . . 14 (∀𝑏 ∈ (Base‘𝐶)∀𝑎 ∈ (Base‘𝐶)(𝑏(Hom ‘𝐶)𝑎) = (𝑏(Hom ‘𝐷)𝑎) ↔ ∀𝑎 ∈ (Base‘𝐶)∀𝑏 ∈ (Base‘𝐶)(𝑏(Hom ‘𝐶)𝑎) = (𝑏(Hom ‘𝐷)𝑎))
2220, 21bitrdi 287 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((Homf𝐶) = (Homf𝐷) ↔ ∀𝑎 ∈ (Base‘𝐶)∀𝑏 ∈ (Base‘𝐶)(𝑏(Hom ‘𝐶)𝑎) = (𝑏(Hom ‘𝐷)𝑎)))
2315, 22mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ∀𝑎 ∈ (Base‘𝐶)∀𝑏 ∈ (Base‘𝐶)(𝑏(Hom ‘𝐶)𝑎) = (𝑏(Hom ‘𝐷)𝑎))
2423r19.21bi 3232 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) → ∀𝑏 ∈ (Base‘𝐶)(𝑏(Hom ‘𝐶)𝑎) = (𝑏(Hom ‘𝐷)𝑎))
2524r19.21bi 3232 . . . . . . . . . 10 (((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (𝑏(Hom ‘𝐶)𝑎) = (𝑏(Hom ‘𝐷)𝑎))
2625eleq2d 2819 . . . . . . . . 9 (((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → ( ∈ (𝑏(Hom ‘𝐶)𝑎) ↔ ∈ (𝑏(Hom ‘𝐷)𝑎)))
2726eubidv 2584 . . . . . . . 8 (((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (∃! ∈ (𝑏(Hom ‘𝐶)𝑎) ↔ ∃! ∈ (𝑏(Hom ‘𝐷)𝑎)))
2827ralbidva 3159 . . . . . . 7 ((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) → (∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑏(Hom ‘𝐶)𝑎) ↔ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑏(Hom ‘𝐷)𝑎)))
2928pm5.32da 579 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑏(Hom ‘𝐶)𝑎)) ↔ (𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑏(Hom ‘𝐷)𝑎))))
3019eleq2d 2819 . . . . . . 7 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (𝑎 ∈ (Base‘𝐶) ↔ 𝑎 ∈ (Base‘𝐷)))
3119raleqdv 3303 . . . . . . 7 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑏(Hom ‘𝐷)𝑎) ↔ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑏(Hom ‘𝐷)𝑎)))
3230, 31anbi12d 632 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑏(Hom ‘𝐷)𝑎)) ↔ (𝑎 ∈ (Base‘𝐷) ∧ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑏(Hom ‘𝐷)𝑎))))
3329, 32bitrd 279 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑏(Hom ‘𝐶)𝑎)) ↔ (𝑎 ∈ (Base‘𝐷) ∧ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑏(Hom ‘𝐷)𝑎))))
3433rabbidva2 3415 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → {𝑎 ∈ (Base‘𝐶) ∣ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑏(Hom ‘𝐶)𝑎)} = {𝑎 ∈ (Base‘𝐷) ∣ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑏(Hom ‘𝐷)𝑎)})
35 simpr 484 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐶 ∈ Cat)
36 eqid 2734 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
3735, 36, 16termoval 17992 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (TermO‘𝐶) = {𝑎 ∈ (Base‘𝐶) ∣ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑏(Hom ‘𝐶)𝑎)})
383adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (compf𝐶) = (compf𝐷))
39 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐶 ∈ V)
40 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐷 ∈ V)
4114, 38, 39, 40catpropd 17706 . . . . . 6 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
4241biimpa 476 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐷 ∈ Cat)
43 eqid 2734 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
4442, 43, 17termoval 17992 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (TermO‘𝐷) = {𝑎 ∈ (Base‘𝐷) ∣ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑏(Hom ‘𝐷)𝑎)})
4534, 37, 443eqtr4d 2779 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (TermO‘𝐶) = (TermO‘𝐷))
4641pm5.32i 574 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ↔ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat))
4746, 45sylbir 235 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat) → (TermO‘𝐶) = (TermO‘𝐷))
48 termofn 17986 . . . . . . . 8 TermO Fn Cat
4948fndmi 6638 . . . . . . 7 dom TermO = Cat
5049eleq2i 2825 . . . . . 6 (𝐶 ∈ dom TermO ↔ 𝐶 ∈ Cat)
51 ndmfv 6907 . . . . . 6 𝐶 ∈ dom TermO → (TermO‘𝐶) = ∅)
5250, 51sylnbir 331 . . . . 5 𝐶 ∈ Cat → (TermO‘𝐶) = ∅)
5352ad2antrl 728 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (TermO‘𝐶) = ∅)
5449eleq2i 2825 . . . . . 6 (𝐷 ∈ dom TermO ↔ 𝐷 ∈ Cat)
55 ndmfv 6907 . . . . . 6 𝐷 ∈ dom TermO → (TermO‘𝐷) = ∅)
5654, 55sylnbir 331 . . . . 5 𝐷 ∈ Cat → (TermO‘𝐷) = ∅)
5756ad2antll 729 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (TermO‘𝐷) = ∅)
5853, 57eqtr4d 2772 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (TermO‘𝐶) = (TermO‘𝐷))
5945, 47, 58pm2.61ddan 813 . 2 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (TermO‘𝐶) = (TermO‘𝐷))
606, 13, 59pm2.61dda 814 1 (𝜑 → (TermO‘𝐶) = (TermO‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  ∃!weu 2566  wral 3050  {crab 3413  Vcvv 3457  c0 4306  dom cdm 5651  cfv 6527  (class class class)co 7399  Basecbs 17213  Hom chom 17267  Catccat 17661  Homf chomf 17663  compfccomf 17664  TermOctermo 17980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-ov 7402  df-oprab 7403  df-mpo 7404  df-1st 7982  df-2nd 7983  df-cat 17665  df-homf 17667  df-comf 17668  df-termo 17983
This theorem is referenced by:  zeroopropd  48968
  Copyright terms: Public domain W3C validator