MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr1a Structured version   Visualization version   GIF version

Theorem tfr1a 8450
Description: A weak version of tfr1 8453 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr1a (Fun 𝐹 ∧ Lim dom 𝐹)

Proof of Theorem tfr1a
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
21tfrlem7 8439 . . 3 Fun recs(𝐺)
3 tfr.1 . . . 4 𝐹 = recs(𝐺)
43funeqi 6599 . . 3 (Fun 𝐹 ↔ Fun recs(𝐺))
52, 4mpbir 231 . 2 Fun 𝐹
61tfrlem16 8449 . . 3 Lim dom recs(𝐺)
73dmeqi 5929 . . . 4 dom 𝐹 = dom recs(𝐺)
8 limeq 6407 . . . 4 (dom 𝐹 = dom recs(𝐺) → (Lim dom 𝐹 ↔ Lim dom recs(𝐺)))
97, 8ax-mp 5 . . 3 (Lim dom 𝐹 ↔ Lim dom recs(𝐺))
106, 9mpbir 231 . 2 Lim dom 𝐹
115, 10pm3.2i 470 1 (Fun 𝐹 ∧ Lim dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  {cab 2717  wral 3067  wrex 3076  dom cdm 5700  cres 5702  Oncon0 6395  Lim wlim 6396  Fun wfun 6567   Fn wfn 6568  cfv 6573  recscrecs 8426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427
This theorem is referenced by:  tfr2b  8452  rdgfun  8472  rdgdmlim  8473  ordtypelem3  9589  ordtypelem4  9590  ordtypelem5  9591  ordtypelem6  9592  ordtypelem7  9593  ordtypelem9  9595
  Copyright terms: Public domain W3C validator