| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfr1a | Structured version Visualization version GIF version | ||
| Description: A weak version of tfr1 8342 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| tfr.1 | ⊢ 𝐹 = recs(𝐺) |
| Ref | Expression |
|---|---|
| tfr1a | ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 2 | 1 | tfrlem7 8328 | . . 3 ⊢ Fun recs(𝐺) |
| 3 | tfr.1 | . . . 4 ⊢ 𝐹 = recs(𝐺) | |
| 4 | 3 | funeqi 6521 | . . 3 ⊢ (Fun 𝐹 ↔ Fun recs(𝐺)) |
| 5 | 2, 4 | mpbir 231 | . 2 ⊢ Fun 𝐹 |
| 6 | 1 | tfrlem16 8338 | . . 3 ⊢ Lim dom recs(𝐺) |
| 7 | 3 | dmeqi 5858 | . . . 4 ⊢ dom 𝐹 = dom recs(𝐺) |
| 8 | limeq 6332 | . . . 4 ⊢ (dom 𝐹 = dom recs(𝐺) → (Lim dom 𝐹 ↔ Lim dom recs(𝐺))) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (Lim dom 𝐹 ↔ Lim dom recs(𝐺)) |
| 10 | 6, 9 | mpbir 231 | . 2 ⊢ Lim dom 𝐹 |
| 11 | 5, 10 | pm3.2i 470 | 1 ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 {cab 2707 ∀wral 3044 ∃wrex 3053 dom cdm 5631 ↾ cres 5633 Oncon0 6320 Lim wlim 6321 Fun wfun 6493 Fn wfn 6494 ‘cfv 6499 recscrecs 8316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 |
| This theorem is referenced by: tfr2b 8341 rdgfun 8361 rdgdmlim 8362 ordtypelem3 9449 ordtypelem4 9450 ordtypelem5 9451 ordtypelem6 9452 ordtypelem7 9453 ordtypelem9 9455 |
| Copyright terms: Public domain | W3C validator |