MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr1a Structured version   Visualization version   GIF version

Theorem tfr1a 8435
Description: A weak version of tfr1 8438 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr1a (Fun 𝐹 ∧ Lim dom 𝐹)

Proof of Theorem tfr1a
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
21tfrlem7 8424 . . 3 Fun recs(𝐺)
3 tfr.1 . . . 4 𝐹 = recs(𝐺)
43funeqi 6586 . . 3 (Fun 𝐹 ↔ Fun recs(𝐺))
52, 4mpbir 231 . 2 Fun 𝐹
61tfrlem16 8434 . . 3 Lim dom recs(𝐺)
73dmeqi 5914 . . . 4 dom 𝐹 = dom recs(𝐺)
8 limeq 6395 . . . 4 (dom 𝐹 = dom recs(𝐺) → (Lim dom 𝐹 ↔ Lim dom recs(𝐺)))
97, 8ax-mp 5 . . 3 (Lim dom 𝐹 ↔ Lim dom recs(𝐺))
106, 9mpbir 231 . 2 Lim dom 𝐹
115, 10pm3.2i 470 1 (Fun 𝐹 ∧ Lim dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  {cab 2713  wral 3060  wrex 3069  dom cdm 5684  cres 5686  Oncon0 6383  Lim wlim 6384  Fun wfun 6554   Fn wfn 6555  cfv 6560  recscrecs 8411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412
This theorem is referenced by:  tfr2b  8437  rdgfun  8457  rdgdmlim  8458  ordtypelem3  9561  ordtypelem4  9562  ordtypelem5  9563  ordtypelem6  9564  ordtypelem7  9565  ordtypelem9  9567
  Copyright terms: Public domain W3C validator