![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tfr1a | Structured version Visualization version GIF version |
Description: A weak version of tfr1 7760 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
tfr.1 | ⊢ 𝐹 = recs(𝐺) |
Ref | Expression |
---|---|
tfr1a | ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2826 | . . . 4 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
2 | 1 | tfrlem7 7746 | . . 3 ⊢ Fun recs(𝐺) |
3 | tfr.1 | . . . 4 ⊢ 𝐹 = recs(𝐺) | |
4 | 3 | funeqi 6145 | . . 3 ⊢ (Fun 𝐹 ↔ Fun recs(𝐺)) |
5 | 2, 4 | mpbir 223 | . 2 ⊢ Fun 𝐹 |
6 | 1 | tfrlem16 7756 | . . 3 ⊢ Lim dom recs(𝐺) |
7 | 3 | dmeqi 5558 | . . . 4 ⊢ dom 𝐹 = dom recs(𝐺) |
8 | limeq 5976 | . . . 4 ⊢ (dom 𝐹 = dom recs(𝐺) → (Lim dom 𝐹 ↔ Lim dom recs(𝐺))) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (Lim dom 𝐹 ↔ Lim dom recs(𝐺)) |
10 | 6, 9 | mpbir 223 | . 2 ⊢ Lim dom 𝐹 |
11 | 5, 10 | pm3.2i 464 | 1 ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∧ wa 386 = wceq 1658 {cab 2812 ∀wral 3118 ∃wrex 3119 dom cdm 5343 ↾ cres 5345 Oncon0 5964 Lim wlim 5965 Fun wfun 6118 Fn wfn 6119 ‘cfv 6124 recscrecs 7734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-reu 3125 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-lim 5969 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-wrecs 7673 df-recs 7735 |
This theorem is referenced by: tfr2b 7759 rdgfun 7779 rdgdmlim 7780 ordtypelem3 8695 ordtypelem4 8696 ordtypelem5 8697 ordtypelem6 8698 ordtypelem7 8699 ordtypelem9 8701 |
Copyright terms: Public domain | W3C validator |