MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr1a Structured version   Visualization version   GIF version

Theorem tfr1a 8225
Description: A weak version of tfr1 8228 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr1a (Fun 𝐹 ∧ Lim dom 𝐹)

Proof of Theorem tfr1a
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
21tfrlem7 8214 . . 3 Fun recs(𝐺)
3 tfr.1 . . . 4 𝐹 = recs(𝐺)
43funeqi 6455 . . 3 (Fun 𝐹 ↔ Fun recs(𝐺))
52, 4mpbir 230 . 2 Fun 𝐹
61tfrlem16 8224 . . 3 Lim dom recs(𝐺)
73dmeqi 5813 . . . 4 dom 𝐹 = dom recs(𝐺)
8 limeq 6278 . . . 4 (dom 𝐹 = dom recs(𝐺) → (Lim dom 𝐹 ↔ Lim dom recs(𝐺)))
97, 8ax-mp 5 . . 3 (Lim dom 𝐹 ↔ Lim dom recs(𝐺))
106, 9mpbir 230 . 2 Lim dom 𝐹
115, 10pm3.2i 471 1 (Fun 𝐹 ∧ Lim dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  {cab 2715  wral 3064  wrex 3065  dom cdm 5589  cres 5591  Oncon0 6266  Lim wlim 6267  Fun wfun 6427   Fn wfn 6428  cfv 6433  recscrecs 8201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202
This theorem is referenced by:  tfr2b  8227  rdgfun  8247  rdgdmlim  8248  ordtypelem3  9279  ordtypelem4  9280  ordtypelem5  9281  ordtypelem6  9282  ordtypelem7  9283  ordtypelem9  9285
  Copyright terms: Public domain W3C validator