| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfr1a | Structured version Visualization version GIF version | ||
| Description: A weak version of tfr1 8368 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| tfr.1 | ⊢ 𝐹 = recs(𝐺) |
| Ref | Expression |
|---|---|
| tfr1a | ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 2 | 1 | tfrlem7 8354 | . . 3 ⊢ Fun recs(𝐺) |
| 3 | tfr.1 | . . . 4 ⊢ 𝐹 = recs(𝐺) | |
| 4 | 3 | funeqi 6540 | . . 3 ⊢ (Fun 𝐹 ↔ Fun recs(𝐺)) |
| 5 | 2, 4 | mpbir 231 | . 2 ⊢ Fun 𝐹 |
| 6 | 1 | tfrlem16 8364 | . . 3 ⊢ Lim dom recs(𝐺) |
| 7 | 3 | dmeqi 5871 | . . . 4 ⊢ dom 𝐹 = dom recs(𝐺) |
| 8 | limeq 6347 | . . . 4 ⊢ (dom 𝐹 = dom recs(𝐺) → (Lim dom 𝐹 ↔ Lim dom recs(𝐺))) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (Lim dom 𝐹 ↔ Lim dom recs(𝐺)) |
| 10 | 6, 9 | mpbir 231 | . 2 ⊢ Lim dom 𝐹 |
| 11 | 5, 10 | pm3.2i 470 | 1 ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 {cab 2708 ∀wral 3045 ∃wrex 3054 dom cdm 5641 ↾ cres 5643 Oncon0 6335 Lim wlim 6336 Fun wfun 6508 Fn wfn 6509 ‘cfv 6514 recscrecs 8342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 |
| This theorem is referenced by: tfr2b 8367 rdgfun 8387 rdgdmlim 8388 ordtypelem3 9480 ordtypelem4 9481 ordtypelem5 9482 ordtypelem6 9483 ordtypelem7 9484 ordtypelem9 9486 |
| Copyright terms: Public domain | W3C validator |