| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfr1a | Structured version Visualization version GIF version | ||
| Description: A weak version of tfr1 8311 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| tfr.1 | ⊢ 𝐹 = recs(𝐺) |
| Ref | Expression |
|---|---|
| tfr1a | ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 2 | 1 | tfrlem7 8297 | . . 3 ⊢ Fun recs(𝐺) |
| 3 | tfr.1 | . . . 4 ⊢ 𝐹 = recs(𝐺) | |
| 4 | 3 | funeqi 6497 | . . 3 ⊢ (Fun 𝐹 ↔ Fun recs(𝐺)) |
| 5 | 2, 4 | mpbir 231 | . 2 ⊢ Fun 𝐹 |
| 6 | 1 | tfrlem16 8307 | . . 3 ⊢ Lim dom recs(𝐺) |
| 7 | 3 | dmeqi 5839 | . . . 4 ⊢ dom 𝐹 = dom recs(𝐺) |
| 8 | limeq 6313 | . . . 4 ⊢ (dom 𝐹 = dom recs(𝐺) → (Lim dom 𝐹 ↔ Lim dom recs(𝐺))) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (Lim dom 𝐹 ↔ Lim dom recs(𝐺)) |
| 10 | 6, 9 | mpbir 231 | . 2 ⊢ Lim dom 𝐹 |
| 11 | 5, 10 | pm3.2i 470 | 1 ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 {cab 2709 ∀wral 3047 ∃wrex 3056 dom cdm 5611 ↾ cres 5613 Oncon0 6301 Lim wlim 6302 Fun wfun 6470 Fn wfn 6471 ‘cfv 6476 recscrecs 8285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 |
| This theorem is referenced by: tfr2b 8310 rdgfun 8330 rdgdmlim 8331 ordtypelem3 9401 ordtypelem4 9402 ordtypelem5 9403 ordtypelem6 9404 ordtypelem7 9405 ordtypelem9 9407 |
| Copyright terms: Public domain | W3C validator |