| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tfr1a | Structured version Visualization version GIF version | ||
| Description: A weak version of tfr1 8416 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| tfr.1 | ⊢ 𝐹 = recs(𝐺) |
| Ref | Expression |
|---|---|
| tfr1a | ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐺‘(𝑓 ↾ 𝑦)))} | |
| 2 | 1 | tfrlem7 8402 | . . 3 ⊢ Fun recs(𝐺) |
| 3 | tfr.1 | . . . 4 ⊢ 𝐹 = recs(𝐺) | |
| 4 | 3 | funeqi 6562 | . . 3 ⊢ (Fun 𝐹 ↔ Fun recs(𝐺)) |
| 5 | 2, 4 | mpbir 231 | . 2 ⊢ Fun 𝐹 |
| 6 | 1 | tfrlem16 8412 | . . 3 ⊢ Lim dom recs(𝐺) |
| 7 | 3 | dmeqi 5889 | . . . 4 ⊢ dom 𝐹 = dom recs(𝐺) |
| 8 | limeq 6369 | . . . 4 ⊢ (dom 𝐹 = dom recs(𝐺) → (Lim dom 𝐹 ↔ Lim dom recs(𝐺))) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (Lim dom 𝐹 ↔ Lim dom recs(𝐺)) |
| 10 | 6, 9 | mpbir 231 | . 2 ⊢ Lim dom 𝐹 |
| 11 | 5, 10 | pm3.2i 470 | 1 ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 {cab 2714 ∀wral 3052 ∃wrex 3061 dom cdm 5659 ↾ cres 5661 Oncon0 6357 Lim wlim 6358 Fun wfun 6530 Fn wfn 6531 ‘cfv 6536 recscrecs 8389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 |
| This theorem is referenced by: tfr2b 8415 rdgfun 8435 rdgdmlim 8436 ordtypelem3 9539 ordtypelem4 9540 ordtypelem5 9541 ordtypelem6 9542 ordtypelem7 9543 ordtypelem9 9545 |
| Copyright terms: Public domain | W3C validator |