MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr1a Structured version   Visualization version   GIF version

Theorem tfr1a 8362
Description: A weak version of tfr1 8365 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr1a (Fun 𝐹 ∧ Lim dom 𝐹)

Proof of Theorem tfr1a
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓𝑦)))}
21tfrlem7 8351 . . 3 Fun recs(𝐺)
3 tfr.1 . . . 4 𝐹 = recs(𝐺)
43funeqi 6537 . . 3 (Fun 𝐹 ↔ Fun recs(𝐺))
52, 4mpbir 231 . 2 Fun 𝐹
61tfrlem16 8361 . . 3 Lim dom recs(𝐺)
73dmeqi 5868 . . . 4 dom 𝐹 = dom recs(𝐺)
8 limeq 6344 . . . 4 (dom 𝐹 = dom recs(𝐺) → (Lim dom 𝐹 ↔ Lim dom recs(𝐺)))
97, 8ax-mp 5 . . 3 (Lim dom 𝐹 ↔ Lim dom recs(𝐺))
106, 9mpbir 231 . 2 Lim dom 𝐹
115, 10pm3.2i 470 1 (Fun 𝐹 ∧ Lim dom 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  {cab 2707  wral 3044  wrex 3053  dom cdm 5638  cres 5640  Oncon0 6332  Lim wlim 6333  Fun wfun 6505   Fn wfn 6506  cfv 6511  recscrecs 8339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340
This theorem is referenced by:  tfr2b  8364  rdgfun  8384  rdgdmlim  8385  ordtypelem3  9473  ordtypelem4  9474  ordtypelem5  9475  ordtypelem6  9476  ordtypelem7  9477  ordtypelem9  9479
  Copyright terms: Public domain W3C validator