MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr2 Structured version   Visualization version   GIF version

Theorem tfr2 8317
Description: Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47. Here we show that the function 𝐹 has the property that for any function 𝐺 whatsoever, the "next" value of 𝐹 is 𝐺 recursively applied to all "previous" values of 𝐹. (Contributed by NM, 9-Apr-1995.) (Revised by Stefan O'Rear, 18-Jan-2015.)
Hypothesis
Ref Expression
tfr.1 𝐹 = recs(𝐺)
Assertion
Ref Expression
tfr2 (𝐴 ∈ On → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))

Proof of Theorem tfr2
StepHypRef Expression
1 tfr.1 . . . . 5 𝐹 = recs(𝐺)
21tfr1 8316 . . . 4 𝐹 Fn On
32fndmi 6585 . . 3 dom 𝐹 = On
43eleq2i 2823 . 2 (𝐴 ∈ dom 𝐹𝐴 ∈ On)
51tfr2a 8314 . 2 (𝐴 ∈ dom 𝐹 → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
64, 5sylbir 235 1 (𝐴 ∈ On → (𝐹𝐴) = (𝐺‘(𝐹𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  dom cdm 5614  cres 5616  Oncon0 6306  cfv 6481  recscrecs 8290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291
This theorem is referenced by:  tfr3  8318  recsval  8323  rdgval  8339  rdg0n  8353  dfac8alem  9920  dfac12lem1  10035  zorn2lem1  10387  ttukeylem3  10402  madeval  27793  onvf1odlem3  35149
  Copyright terms: Public domain W3C validator