Proof of Theorem uhgrimisgrgriclem
| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6906 |
. . . . . 6
⊢ (𝑘 = (◡𝐼‘𝐽) → (𝐺‘𝑘) = (𝐺‘(◡𝐼‘𝐽))) |
| 2 | 1 | sseq1d 4015 |
. . . . 5
⊢ (𝑘 = (◡𝐼‘𝐽) → ((𝐺‘𝑘) ⊆ 𝑁 ↔ (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁)) |
| 3 | | fveqeq2 6915 |
. . . . 5
⊢ (𝑘 = (◡𝐼‘𝐽) → ((𝐼‘𝑘) = 𝐽 ↔ (𝐼‘(◡𝐼‘𝐽)) = 𝐽)) |
| 4 | 2, 3 | anbi12d 632 |
. . . 4
⊢ (𝑘 = (◡𝐼‘𝐽) → (((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽) ↔ ((𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁 ∧ (𝐼‘(◡𝐼‘𝐽)) = 𝐽))) |
| 5 | | simpr 484 |
. . . . . 6
⊢ ((𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) → 𝐼:𝐴–1-1-onto→𝐵) |
| 6 | 5 | 3ad2ant2 1135 |
. . . . 5
⊢ (((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) → 𝐼:𝐴–1-1-onto→𝐵) |
| 7 | | simpl 482 |
. . . . 5
⊢ ((𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁)) → 𝐽 ∈ 𝐵) |
| 8 | | f1ocnvdm 7305 |
. . . . 5
⊢ ((𝐼:𝐴–1-1-onto→𝐵 ∧ 𝐽 ∈ 𝐵) → (◡𝐼‘𝐽) ∈ 𝐴) |
| 9 | 6, 7, 8 | syl2an 596 |
. . . 4
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) ∧ (𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁))) → (◡𝐼‘𝐽) ∈ 𝐴) |
| 10 | | 2fveq3 6911 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (◡𝐼‘𝐽) → (𝐻‘(𝐼‘𝑖)) = (𝐻‘(𝐼‘(◡𝐼‘𝐽)))) |
| 11 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = (◡𝐼‘𝐽) → (𝐺‘𝑖) = (𝐺‘(◡𝐼‘𝐽))) |
| 12 | 11 | imaeq2d 6078 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (◡𝐼‘𝐽) → (𝐹 “ (𝐺‘𝑖)) = (𝐹 “ (𝐺‘(◡𝐼‘𝐽)))) |
| 13 | 10, 12 | eqeq12d 2753 |
. . . . . . . . . . . 12
⊢ (𝑖 = (◡𝐼‘𝐽) → ((𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖)) ↔ (𝐻‘(𝐼‘(◡𝐼‘𝐽))) = (𝐹 “ (𝐺‘(◡𝐼‘𝐽))))) |
| 14 | 13 | rspcv 3618 |
. . . . . . . . . . 11
⊢ ((◡𝐼‘𝐽) ∈ 𝐴 → (∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖)) → (𝐻‘(𝐼‘(◡𝐼‘𝐽))) = (𝐹 “ (𝐺‘(◡𝐼‘𝐽))))) |
| 15 | 14 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) → (∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖)) → (𝐻‘(𝐼‘(◡𝐼‘𝐽))) = (𝐹 “ (𝐺‘(◡𝐼‘𝐽))))) |
| 16 | 7 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) ∧ (𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁))) → 𝐽 ∈ 𝐵) |
| 17 | | f1ocnvfv2 7297 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼:𝐴–1-1-onto→𝐵 ∧ 𝐽 ∈ 𝐵) → (𝐼‘(◡𝐼‘𝐽)) = 𝐽) |
| 18 | 5, 16, 17 | syl2anr 597 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) ∧ (𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁))) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) → (𝐼‘(◡𝐼‘𝐽)) = 𝐽) |
| 19 | 18 | fveqeq2d 6914 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) ∧ (𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁))) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) → ((𝐻‘(𝐼‘(◡𝐼‘𝐽))) = (𝐹 “ (𝐺‘(◡𝐼‘𝐽))) ↔ (𝐻‘𝐽) = (𝐹 “ (𝐺‘(◡𝐼‘𝐽))))) |
| 20 | | sseq1 4009 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐻‘𝐽) = (𝐹 “ (𝐺‘(◡𝐼‘𝐽))) → ((𝐻‘𝐽) ⊆ (𝐹 “ 𝑁) ↔ (𝐹 “ (𝐺‘(◡𝐼‘𝐽))) ⊆ (𝐹 “ 𝑁))) |
| 21 | 20 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) ∧ (𝐻‘𝐽) = (𝐹 “ (𝐺‘(◡𝐼‘𝐽)))) → ((𝐻‘𝐽) ⊆ (𝐹 “ 𝑁) ↔ (𝐹 “ (𝐺‘(◡𝐼‘𝐽))) ⊆ (𝐹 “ 𝑁))) |
| 22 | | f1of1 6847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐹:𝑉–1-1-onto→𝑊 → 𝐹:𝑉–1-1→𝑊) |
| 23 | 22 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) → 𝐹:𝑉–1-1→𝑊) |
| 24 | 23 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) → 𝐹:𝑉–1-1→𝑊) |
| 25 | 24 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) ∧ 𝐽 ∈ 𝐵 ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) → 𝐹:𝑉–1-1→𝑊) |
| 26 | | simp1lr 1238 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) ∧ 𝐽 ∈ 𝐵 ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) → 𝐺:𝐴⟶𝒫 𝑉) |
| 27 | | simp1r 1199 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) ∧ 𝐽 ∈ 𝐵 ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) → (◡𝐼‘𝐽) ∈ 𝐴) |
| 28 | 26, 27 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) ∧ 𝐽 ∈ 𝐵 ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) → (𝐺‘(◡𝐼‘𝐽)) ∈ 𝒫 𝑉) |
| 29 | 28 | elpwid 4609 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) ∧ 𝐽 ∈ 𝐵 ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) → (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑉) |
| 30 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) → 𝑁 ⊆ 𝑉) |
| 31 | 30 | 3ad2ant3 1136 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) ∧ 𝐽 ∈ 𝐵 ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) → 𝑁 ⊆ 𝑉) |
| 32 | | f1imass 7284 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹:𝑉–1-1→𝑊 ∧ ((𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑉 ∧ 𝑁 ⊆ 𝑉)) → ((𝐹 “ (𝐺‘(◡𝐼‘𝐽))) ⊆ (𝐹 “ 𝑁) ↔ (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁)) |
| 33 | 25, 29, 31, 32 | syl12anc 837 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) ∧ 𝐽 ∈ 𝐵 ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) → ((𝐹 “ (𝐺‘(◡𝐼‘𝐽))) ⊆ (𝐹 “ 𝑁) ↔ (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁)) |
| 34 | 33 | biimpd 229 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) ∧ 𝐽 ∈ 𝐵 ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) → ((𝐹 “ (𝐺‘(◡𝐼‘𝐽))) ⊆ (𝐹 “ 𝑁) → (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁)) |
| 35 | 34 | 3exp 1120 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) → (𝐽 ∈ 𝐵 → ((𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) → ((𝐹 “ (𝐺‘(◡𝐼‘𝐽))) ⊆ (𝐹 “ 𝑁) → (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁)))) |
| 36 | 35 | com24 95 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) → ((𝐹 “ (𝐺‘(◡𝐼‘𝐽))) ⊆ (𝐹 “ 𝑁) → ((𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) → (𝐽 ∈ 𝐵 → (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁)))) |
| 37 | 36 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) ∧ (𝐻‘𝐽) = (𝐹 “ (𝐺‘(◡𝐼‘𝐽)))) → ((𝐹 “ (𝐺‘(◡𝐼‘𝐽))) ⊆ (𝐹 “ 𝑁) → ((𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) → (𝐽 ∈ 𝐵 → (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁)))) |
| 38 | 21, 37 | sylbid 240 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) ∧ (𝐻‘𝐽) = (𝐹 “ (𝐺‘(◡𝐼‘𝐽)))) → ((𝐻‘𝐽) ⊆ (𝐹 “ 𝑁) → ((𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) → (𝐽 ∈ 𝐵 → (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁)))) |
| 39 | 38 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) → ((𝐻‘𝐽) = (𝐹 “ (𝐺‘(◡𝐼‘𝐽))) → ((𝐻‘𝐽) ⊆ (𝐹 “ 𝑁) → ((𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) → (𝐽 ∈ 𝐵 → (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁))))) |
| 40 | 39 | com25 99 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) → (𝐽 ∈ 𝐵 → ((𝐻‘𝐽) ⊆ (𝐹 “ 𝑁) → ((𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) → ((𝐻‘𝐽) = (𝐹 “ (𝐺‘(◡𝐼‘𝐽))) → (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁))))) |
| 41 | 40 | imp42 426 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) ∧ (𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁))) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) → ((𝐻‘𝐽) = (𝐹 “ (𝐺‘(◡𝐼‘𝐽))) → (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁)) |
| 42 | 19, 41 | sylbid 240 |
. . . . . . . . . . . . . 14
⊢
(((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) ∧ (𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁))) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) → ((𝐻‘(𝐼‘(◡𝐼‘𝐽))) = (𝐹 “ (𝐺‘(◡𝐼‘𝐽))) → (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁)) |
| 43 | 42 | ex 412 |
. . . . . . . . . . . . 13
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) ∧ (𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁))) → ((𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) → ((𝐻‘(𝐼‘(◡𝐼‘𝐽))) = (𝐹 “ (𝐺‘(◡𝐼‘𝐽))) → (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁))) |
| 44 | 43 | com23 86 |
. . . . . . . . . . . 12
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) ∧ (𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁))) → ((𝐻‘(𝐼‘(◡𝐼‘𝐽))) = (𝐹 “ (𝐺‘(◡𝐼‘𝐽))) → ((𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) → (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁))) |
| 45 | 44 | ex 412 |
. . . . . . . . . . 11
⊢ (((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) → ((𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁)) → ((𝐻‘(𝐼‘(◡𝐼‘𝐽))) = (𝐹 “ (𝐺‘(◡𝐼‘𝐽))) → ((𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) → (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁)))) |
| 46 | 45 | com23 86 |
. . . . . . . . . 10
⊢ (((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) → ((𝐻‘(𝐼‘(◡𝐼‘𝐽))) = (𝐹 “ (𝐺‘(◡𝐼‘𝐽))) → ((𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁)) → ((𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) → (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁)))) |
| 47 | 15, 46 | syld 47 |
. . . . . . . . 9
⊢ (((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (◡𝐼‘𝐽) ∈ 𝐴) → (∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖)) → ((𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁)) → ((𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) → (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁)))) |
| 48 | 47 | ex 412 |
. . . . . . . 8
⊢ ((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) → ((◡𝐼‘𝐽) ∈ 𝐴 → (∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖)) → ((𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁)) → ((𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) → (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁))))) |
| 49 | 48 | com25 99 |
. . . . . . 7
⊢ ((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) → ((𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) → (∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖)) → ((𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁)) → ((◡𝐼‘𝐽) ∈ 𝐴 → (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁))))) |
| 50 | 49 | 3imp1 1348 |
. . . . . 6
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) ∧ (𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁))) → ((◡𝐼‘𝐽) ∈ 𝐴 → (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁)) |
| 51 | 9, 50 | mpd 15 |
. . . . 5
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) ∧ (𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁))) → (𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁) |
| 52 | 6, 7, 17 | syl2an 596 |
. . . . 5
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) ∧ (𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁))) → (𝐼‘(◡𝐼‘𝐽)) = 𝐽) |
| 53 | 51, 52 | jca 511 |
. . . 4
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) ∧ (𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁))) → ((𝐺‘(◡𝐼‘𝐽)) ⊆ 𝑁 ∧ (𝐼‘(◡𝐼‘𝐽)) = 𝐽)) |
| 54 | 4, 9, 53 | rspcedvdw 3625 |
. . 3
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) ∧ (𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁))) → ∃𝑘 ∈ 𝐴 ((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽)) |
| 55 | 54 | ex 412 |
. 2
⊢ (((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) → ((𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁)) → ∃𝑘 ∈ 𝐴 ((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽))) |
| 56 | | f1of 6848 |
. . . . . . . 8
⊢ (𝐼:𝐴–1-1-onto→𝐵 → 𝐼:𝐴⟶𝐵) |
| 57 | 56 | adantl 481 |
. . . . . . 7
⊢ ((𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) → 𝐼:𝐴⟶𝐵) |
| 58 | 57 | 3ad2ant2 1135 |
. . . . . 6
⊢ (((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) → 𝐼:𝐴⟶𝐵) |
| 59 | 58 | 3ad2ant1 1134 |
. . . . 5
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) ∧ 𝑘 ∈ 𝐴 ∧ ((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽)) → 𝐼:𝐴⟶𝐵) |
| 60 | | simp2 1138 |
. . . . 5
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) ∧ 𝑘 ∈ 𝐴 ∧ ((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽)) → 𝑘 ∈ 𝐴) |
| 61 | 59, 60 | ffvelcdmd 7105 |
. . . 4
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) ∧ 𝑘 ∈ 𝐴 ∧ ((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽)) → (𝐼‘𝑘) ∈ 𝐵) |
| 62 | | 2fveq3 6911 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → (𝐻‘(𝐼‘𝑖)) = (𝐻‘(𝐼‘𝑘))) |
| 63 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑘 → (𝐺‘𝑖) = (𝐺‘𝑘)) |
| 64 | 63 | imaeq2d 6078 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → (𝐹 “ (𝐺‘𝑖)) = (𝐹 “ (𝐺‘𝑘))) |
| 65 | 62, 64 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑘 → ((𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖)) ↔ (𝐻‘(𝐼‘𝑘)) = (𝐹 “ (𝐺‘𝑘)))) |
| 66 | 65 | rspcv 3618 |
. . . . . . . . . 10
⊢ (𝑘 ∈ 𝐴 → (∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖)) → (𝐻‘(𝐼‘𝑘)) = (𝐹 “ (𝐺‘𝑘)))) |
| 67 | 66 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) ∧ 𝑘 ∈ 𝐴) → (∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖)) → (𝐻‘(𝐼‘𝑘)) = (𝐹 “ (𝐺‘𝑘)))) |
| 68 | | simp3 1139 |
. . . . . . . . . . . 12
⊢
(((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) ∧ 𝑘 ∈ 𝐴) ∧ ((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽) ∧ (𝐻‘(𝐼‘𝑘)) = (𝐹 “ (𝐺‘𝑘))) → (𝐻‘(𝐼‘𝑘)) = (𝐹 “ (𝐺‘𝑘))) |
| 69 | | imass2 6120 |
. . . . . . . . . . . . . 14
⊢ ((𝐺‘𝑘) ⊆ 𝑁 → (𝐹 “ (𝐺‘𝑘)) ⊆ (𝐹 “ 𝑁)) |
| 70 | 69 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽) → (𝐹 “ (𝐺‘𝑘)) ⊆ (𝐹 “ 𝑁)) |
| 71 | 70 | 3ad2ant2 1135 |
. . . . . . . . . . . 12
⊢
(((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) ∧ 𝑘 ∈ 𝐴) ∧ ((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽) ∧ (𝐻‘(𝐼‘𝑘)) = (𝐹 “ (𝐺‘𝑘))) → (𝐹 “ (𝐺‘𝑘)) ⊆ (𝐹 “ 𝑁)) |
| 72 | 68, 71 | eqsstrd 4018 |
. . . . . . . . . . 11
⊢
(((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) ∧ 𝑘 ∈ 𝐴) ∧ ((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽) ∧ (𝐻‘(𝐼‘𝑘)) = (𝐹 “ (𝐺‘𝑘))) → (𝐻‘(𝐼‘𝑘)) ⊆ (𝐹 “ 𝑁)) |
| 73 | 72 | 3exp 1120 |
. . . . . . . . . 10
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) ∧ 𝑘 ∈ 𝐴) → (((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽) → ((𝐻‘(𝐼‘𝑘)) = (𝐹 “ (𝐺‘𝑘)) → (𝐻‘(𝐼‘𝑘)) ⊆ (𝐹 “ 𝑁)))) |
| 74 | 73 | com23 86 |
. . . . . . . . 9
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) ∧ 𝑘 ∈ 𝐴) → ((𝐻‘(𝐼‘𝑘)) = (𝐹 “ (𝐺‘𝑘)) → (((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽) → (𝐻‘(𝐼‘𝑘)) ⊆ (𝐹 “ 𝑁)))) |
| 75 | 67, 74 | syld 47 |
. . . . . . . 8
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) ∧ 𝑘 ∈ 𝐴) → (∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖)) → (((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽) → (𝐻‘(𝐼‘𝑘)) ⊆ (𝐹 “ 𝑁)))) |
| 76 | 75 | ex 412 |
. . . . . . 7
⊢ (((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) → (𝑘 ∈ 𝐴 → (∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖)) → (((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽) → (𝐻‘(𝐼‘𝑘)) ⊆ (𝐹 “ 𝑁))))) |
| 77 | 76 | com23 86 |
. . . . . 6
⊢ (((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵)) → (∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖)) → (𝑘 ∈ 𝐴 → (((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽) → (𝐻‘(𝐼‘𝑘)) ⊆ (𝐹 “ 𝑁))))) |
| 78 | 77 | 3impia 1118 |
. . . . 5
⊢ (((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) → (𝑘 ∈ 𝐴 → (((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽) → (𝐻‘(𝐼‘𝑘)) ⊆ (𝐹 “ 𝑁)))) |
| 79 | 78 | 3imp 1111 |
. . . 4
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) ∧ 𝑘 ∈ 𝐴 ∧ ((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽)) → (𝐻‘(𝐼‘𝑘)) ⊆ (𝐹 “ 𝑁)) |
| 80 | | eleq1 2829 |
. . . . . . 7
⊢ ((𝐼‘𝑘) = 𝐽 → ((𝐼‘𝑘) ∈ 𝐵 ↔ 𝐽 ∈ 𝐵)) |
| 81 | | fveq2 6906 |
. . . . . . . 8
⊢ ((𝐼‘𝑘) = 𝐽 → (𝐻‘(𝐼‘𝑘)) = (𝐻‘𝐽)) |
| 82 | 81 | sseq1d 4015 |
. . . . . . 7
⊢ ((𝐼‘𝑘) = 𝐽 → ((𝐻‘(𝐼‘𝑘)) ⊆ (𝐹 “ 𝑁) ↔ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁))) |
| 83 | 80, 82 | anbi12d 632 |
. . . . . 6
⊢ ((𝐼‘𝑘) = 𝐽 → (((𝐼‘𝑘) ∈ 𝐵 ∧ (𝐻‘(𝐼‘𝑘)) ⊆ (𝐹 “ 𝑁)) ↔ (𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁)))) |
| 84 | 83 | adantl 481 |
. . . . 5
⊢ (((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽) → (((𝐼‘𝑘) ∈ 𝐵 ∧ (𝐻‘(𝐼‘𝑘)) ⊆ (𝐹 “ 𝑁)) ↔ (𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁)))) |
| 85 | 84 | 3ad2ant3 1136 |
. . . 4
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) ∧ 𝑘 ∈ 𝐴 ∧ ((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽)) → (((𝐼‘𝑘) ∈ 𝐵 ∧ (𝐻‘(𝐼‘𝑘)) ⊆ (𝐹 “ 𝑁)) ↔ (𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁)))) |
| 86 | 61, 79, 85 | mpbi2and 712 |
. . 3
⊢ ((((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) ∧ 𝑘 ∈ 𝐴 ∧ ((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽)) → (𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁))) |
| 87 | 86 | rexlimdv3a 3159 |
. 2
⊢ (((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) → (∃𝑘 ∈ 𝐴 ((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽) → (𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁)))) |
| 88 | 55, 87 | impbid 212 |
1
⊢ (((𝐹:𝑉–1-1-onto→𝑊 ∧ 𝐺:𝐴⟶𝒫 𝑉) ∧ (𝑁 ⊆ 𝑉 ∧ 𝐼:𝐴–1-1-onto→𝐵) ∧ ∀𝑖 ∈ 𝐴 (𝐻‘(𝐼‘𝑖)) = (𝐹 “ (𝐺‘𝑖))) → ((𝐽 ∈ 𝐵 ∧ (𝐻‘𝐽) ⊆ (𝐹 “ 𝑁)) ↔ ∃𝑘 ∈ 𝐴 ((𝐺‘𝑘) ⊆ 𝑁 ∧ (𝐼‘𝑘) = 𝐽))) |