Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniretop | Structured version Visualization version GIF version |
Description: The underlying set of the standard topology on the reals is the reals. (Contributed by FL, 4-Jun-2007.) |
Ref | Expression |
---|---|
uniretop | ⊢ ℝ = ∪ (topGen‘ran (,)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unirnioo 13282 | . 2 ⊢ ℝ = ∪ ran (,) | |
2 | retopbas 24030 | . . 3 ⊢ ran (,) ∈ TopBases | |
3 | unitg 22223 | . . 3 ⊢ (ran (,) ∈ TopBases → ∪ (topGen‘ran (,)) = ∪ ran (,)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ∪ (topGen‘ran (,)) = ∪ ran (,) |
5 | 1, 4 | eqtr4i 2767 | 1 ⊢ ℝ = ∪ (topGen‘ran (,)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ∪ cuni 4852 ran crn 5621 ‘cfv 6479 ℝcr 10971 (,)cioo 13180 topGenctg 17245 TopBasesctb 22201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-pre-lttri 11046 ax-pre-lttrn 11047 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-po 5532 df-so 5533 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-1st 7899 df-2nd 7900 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-ioo 13184 df-topgen 17251 df-bases 22202 |
This theorem is referenced by: retopon 24033 retps 24034 icccld 24036 icopnfcld 24037 iocmnfcld 24038 qdensere 24039 zcld 24082 iccntr 24090 icccmp 24094 retopconn 24098 opnreen 24100 rectbntr0 24101 cnmpopc 24197 evth 24228 evth2 24229 evthicc 24729 ovolicc2 24792 opnmbllem 24871 lhop 25286 dvcnvrelem2 25288 dvcnvre 25289 ftc1 25312 taylthlem2 25639 ipasslem8 29487 circtopn 32085 tpr2rico 32160 rrhf 32246 rrhqima 32262 rrhre 32269 brsigarn 32450 unibrsiga 32452 sxbrsigalem3 32539 dya2iocucvr 32551 sxbrsigalem1 32552 orrvcval4 32731 orrvcoel 32732 orrvccel 32733 retopsconn 33510 cvmliftlem10 33555 ivthALT 34620 ptrecube 35890 poimirlem29 35919 poimirlem30 35920 poimirlem31 35921 opnmbllem0 35926 mblfinlem1 35927 mblfinlem2 35928 mblfinlem3 35929 mblfinlem4 35930 ismblfin 35931 ftc1cnnc 35962 refsum2cnlem1 42909 sncldre 42918 reopn 43171 ioontr 43393 limciccioolb 43506 limcicciooub 43522 lptre2pt 43525 limclner 43536 limclr 43540 cncfiooicclem1 43778 fperdvper 43804 itgsubsticclem 43860 stoweidlem62 43947 dirkercncflem2 43989 dirkercncflem3 43990 dirkercncflem4 43991 fourierdlem42 44034 fourierdlem58 44049 fourierdlem73 44064 fouriercnp 44111 fouriercn 44117 cnfsmf 44623 incsmf 44625 decsmf 44650 smfpimbor1lem2 44682 |
Copyright terms: Public domain | W3C validator |