Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniretop | Structured version Visualization version GIF version |
Description: The underlying set of the standard topology on the reals is the reals. (Contributed by FL, 4-Jun-2007.) |
Ref | Expression |
---|---|
uniretop | ⊢ ℝ = ∪ (topGen‘ran (,)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unirnioo 12895 | . 2 ⊢ ℝ = ∪ ran (,) | |
2 | retopbas 23477 | . . 3 ⊢ ran (,) ∈ TopBases | |
3 | unitg 21682 | . . 3 ⊢ (ran (,) ∈ TopBases → ∪ (topGen‘ran (,)) = ∪ ran (,)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ∪ (topGen‘ran (,)) = ∪ ran (,) |
5 | 1, 4 | eqtr4i 2785 | 1 ⊢ ℝ = ∪ (topGen‘ran (,)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2112 ∪ cuni 4802 ran crn 5530 ‘cfv 6341 ℝcr 10588 (,)cioo 12793 topGenctg 16784 TopBasesctb 21660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-resscn 10646 ax-pre-lttri 10663 ax-pre-lttrn 10664 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-id 5435 df-po 5448 df-so 5449 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-ov 7160 df-oprab 7161 df-mpo 7162 df-1st 7700 df-2nd 7701 df-er 8306 df-en 8542 df-dom 8543 df-sdom 8544 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-ioo 12797 df-topgen 16790 df-bases 21661 |
This theorem is referenced by: retopon 23480 retps 23481 icccld 23483 icopnfcld 23484 iocmnfcld 23485 qdensere 23486 zcld 23529 iccntr 23537 icccmp 23541 retopconn 23545 opnreen 23547 rectbntr0 23548 cnmpopc 23644 evth 23675 evth2 23676 evthicc 24174 ovolicc2 24237 opnmbllem 24316 lhop 24730 dvcnvrelem2 24732 dvcnvre 24733 ftc1 24756 taylthlem2 25083 ipasslem8 28734 circtopn 31322 tpr2rico 31397 rrhf 31481 rrhqima 31497 rrhre 31504 brsigarn 31685 unibrsiga 31687 sxbrsigalem3 31772 dya2iocucvr 31784 sxbrsigalem1 31785 orrvcval4 31964 orrvcoel 31965 orrvccel 31966 retopsconn 32741 cvmliftlem10 32786 ivthALT 34109 ptrecube 35373 poimirlem29 35402 poimirlem30 35403 poimirlem31 35404 opnmbllem0 35409 mblfinlem1 35410 mblfinlem2 35411 mblfinlem3 35412 mblfinlem4 35413 ismblfin 35414 ftc1cnnc 35445 refsum2cnlem1 42085 sncldre 42095 reopn 42334 ioontr 42560 limciccioolb 42675 limcicciooub 42691 lptre2pt 42694 limclner 42705 limclr 42709 cncfiooicclem1 42947 fperdvper 42973 itgsubsticclem 43029 stoweidlem62 43116 dirkercncflem2 43158 dirkercncflem3 43159 dirkercncflem4 43160 fourierdlem42 43203 fourierdlem58 43218 fourierdlem73 43233 fouriercnp 43280 fouriercn 43286 cnfsmf 43786 incsmf 43788 decsmf 43812 smfpimbor1lem2 43843 |
Copyright terms: Public domain | W3C validator |