![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniretop | Structured version Visualization version GIF version |
Description: The underlying set of the standard topology on the reals is the reals. (Contributed by FL, 4-Jun-2007.) |
Ref | Expression |
---|---|
uniretop | ⊢ ℝ = ∪ (topGen‘ran (,)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unirnioo 13428 | . 2 ⊢ ℝ = ∪ ran (,) | |
2 | retopbas 24284 | . . 3 ⊢ ran (,) ∈ TopBases | |
3 | unitg 22477 | . . 3 ⊢ (ran (,) ∈ TopBases → ∪ (topGen‘ran (,)) = ∪ ran (,)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ∪ (topGen‘ran (,)) = ∪ ran (,) |
5 | 1, 4 | eqtr4i 2763 | 1 ⊢ ℝ = ∪ (topGen‘ran (,)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ∪ cuni 4908 ran crn 5677 ‘cfv 6543 ℝcr 11111 (,)cioo 13326 topGenctg 17385 TopBasesctb 22455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-ioo 13330 df-topgen 17391 df-bases 22456 |
This theorem is referenced by: retopon 24287 retps 24288 icccld 24290 icopnfcld 24291 iocmnfcld 24292 qdensere 24293 zcld 24336 iccntr 24344 icccmp 24348 retopconn 24352 opnreen 24354 rectbntr0 24355 cnmpopc 24451 evth 24482 evth2 24483 evthicc 24983 ovolicc2 25046 opnmbllem 25125 lhop 25540 dvcnvrelem2 25542 dvcnvre 25543 ftc1 25566 taylthlem2 25893 ipasslem8 30128 circtopn 32886 tpr2rico 32961 rrhf 33047 rrhqima 33063 rrhre 33070 brsigarn 33251 unibrsiga 33253 sxbrsigalem3 33340 dya2iocucvr 33352 sxbrsigalem1 33353 orrvcval4 33532 orrvcoel 33533 orrvccel 33534 retopsconn 34309 cvmliftlem10 34354 ivthALT 35306 ptrecube 36574 poimirlem29 36603 poimirlem30 36604 poimirlem31 36605 opnmbllem0 36610 mblfinlem1 36611 mblfinlem2 36612 mblfinlem3 36613 mblfinlem4 36614 ismblfin 36615 ftc1cnnc 36646 refsum2cnlem1 43803 sncldre 43811 reopn 44078 ioontr 44303 limciccioolb 44416 limcicciooub 44432 lptre2pt 44435 limclner 44446 limclr 44450 cncfiooicclem1 44688 fperdvper 44714 itgsubsticclem 44770 stoweidlem62 44857 dirkercncflem2 44899 dirkercncflem3 44900 dirkercncflem4 44901 fourierdlem42 44944 fourierdlem58 44959 fourierdlem73 44974 fouriercnp 45021 fouriercn 45027 cnfsmf 45535 incsmf 45537 decsmf 45562 smfpimbor1lem2 45594 |
Copyright terms: Public domain | W3C validator |