![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniretop | Structured version Visualization version GIF version |
Description: The underlying set of the standard topology on the reals is the reals. (Contributed by FL, 4-Jun-2007.) |
Ref | Expression |
---|---|
uniretop | ⊢ ℝ = ∪ (topGen‘ran (,)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unirnioo 13426 | . 2 ⊢ ℝ = ∪ ran (,) | |
2 | retopbas 24277 | . . 3 ⊢ ran (,) ∈ TopBases | |
3 | unitg 22470 | . . 3 ⊢ (ran (,) ∈ TopBases → ∪ (topGen‘ran (,)) = ∪ ran (,)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ∪ (topGen‘ran (,)) = ∪ ran (,) |
5 | 1, 4 | eqtr4i 2764 | 1 ⊢ ℝ = ∪ (topGen‘ran (,)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ∪ cuni 4909 ran crn 5678 ‘cfv 6544 ℝcr 11109 (,)cioo 13324 topGenctg 17383 TopBasesctb 22448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-ioo 13328 df-topgen 17389 df-bases 22449 |
This theorem is referenced by: retopon 24280 retps 24281 icccld 24283 icopnfcld 24284 iocmnfcld 24285 qdensere 24286 zcld 24329 iccntr 24337 icccmp 24341 retopconn 24345 opnreen 24347 rectbntr0 24348 cnmpopc 24444 evth 24475 evth2 24476 evthicc 24976 ovolicc2 25039 opnmbllem 25118 lhop 25533 dvcnvrelem2 25535 dvcnvre 25536 ftc1 25559 taylthlem2 25886 ipasslem8 30090 circtopn 32817 tpr2rico 32892 rrhf 32978 rrhqima 32994 rrhre 33001 brsigarn 33182 unibrsiga 33184 sxbrsigalem3 33271 dya2iocucvr 33283 sxbrsigalem1 33284 orrvcval4 33463 orrvcoel 33464 orrvccel 33465 retopsconn 34240 cvmliftlem10 34285 ivthALT 35220 ptrecube 36488 poimirlem29 36517 poimirlem30 36518 poimirlem31 36519 opnmbllem0 36524 mblfinlem1 36525 mblfinlem2 36526 mblfinlem3 36527 mblfinlem4 36528 ismblfin 36529 ftc1cnnc 36560 refsum2cnlem1 43721 sncldre 43729 reopn 43999 ioontr 44224 limciccioolb 44337 limcicciooub 44353 lptre2pt 44356 limclner 44367 limclr 44371 cncfiooicclem1 44609 fperdvper 44635 itgsubsticclem 44691 stoweidlem62 44778 dirkercncflem2 44820 dirkercncflem3 44821 dirkercncflem4 44822 fourierdlem42 44865 fourierdlem58 44880 fourierdlem73 44895 fouriercnp 44942 fouriercn 44948 cnfsmf 45456 incsmf 45458 decsmf 45483 smfpimbor1lem2 45515 |
Copyright terms: Public domain | W3C validator |