| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniretop | Structured version Visualization version GIF version | ||
| Description: The underlying set of the standard topology on the reals is the reals. (Contributed by FL, 4-Jun-2007.) |
| Ref | Expression |
|---|---|
| uniretop | ⊢ ℝ = ∪ (topGen‘ran (,)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unirnioo 13386 | . 2 ⊢ ℝ = ∪ ran (,) | |
| 2 | retopbas 24681 | . . 3 ⊢ ran (,) ∈ TopBases | |
| 3 | unitg 22887 | . . 3 ⊢ (ran (,) ∈ TopBases → ∪ (topGen‘ran (,)) = ∪ ran (,)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ∪ (topGen‘ran (,)) = ∪ ran (,) |
| 5 | 1, 4 | eqtr4i 2755 | 1 ⊢ ℝ = ∪ (topGen‘ran (,)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cuni 4867 ran crn 5632 ‘cfv 6499 ℝcr 11043 (,)cioo 13282 topGenctg 17376 TopBasesctb 22865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-ioo 13286 df-topgen 17382 df-bases 22866 |
| This theorem is referenced by: retopon 24684 retps 24685 icccld 24687 icopnfcld 24688 iocmnfcld 24689 qdensere 24690 zcld 24735 iccntr 24743 icccmp 24747 retopconn 24751 opnreen 24753 rectbntr0 24754 cnmpopc 24855 evth 24891 evth2 24892 evthicc 25393 ovolicc2 25456 opnmbllem 25535 lhop 25954 dvcnvrelem2 25956 dvcnvre 25957 ftc1 25982 taylthlem2 26315 taylthlem2OLD 26316 ipasslem8 30816 circtopn 33820 tpr2rico 33895 rrhf 33981 rrhqima 33997 rrhre 34004 brsigarn 34167 unibrsiga 34169 sxbrsigalem3 34256 dya2iocucvr 34268 sxbrsigalem1 34269 orrvcval4 34449 orrvcoel 34450 orrvccel 34451 retopsconn 35229 cvmliftlem10 35274 ivthALT 36316 ptrecube 37607 poimirlem29 37636 poimirlem30 37637 poimirlem31 37638 opnmbllem0 37643 mblfinlem1 37644 mblfinlem2 37645 mblfinlem3 37646 mblfinlem4 37647 ismblfin 37648 ftc1cnnc 37679 readvrec2 42342 refsum2cnlem1 45024 sncldre 45031 reopn 45280 ioontr 45502 limciccioolb 45612 limcicciooub 45628 lptre2pt 45631 limclner 45642 limclr 45646 cncfiooicclem1 45884 fperdvper 45910 itgsubsticclem 45966 stoweidlem62 46053 dirkercncflem2 46095 dirkercncflem3 46096 dirkercncflem4 46097 fourierdlem42 46140 fourierdlem58 46155 fourierdlem73 46170 fouriercnp 46217 fouriercn 46223 cnfsmf 46731 incsmf 46733 decsmf 46758 smfpimbor1lem2 46790 |
| Copyright terms: Public domain | W3C validator |