| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniretop | Structured version Visualization version GIF version | ||
| Description: The underlying set of the standard topology on the reals is the reals. (Contributed by FL, 4-Jun-2007.) |
| Ref | Expression |
|---|---|
| uniretop | ⊢ ℝ = ∪ (topGen‘ran (,)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unirnioo 13349 | . 2 ⊢ ℝ = ∪ ran (,) | |
| 2 | retopbas 24675 | . . 3 ⊢ ran (,) ∈ TopBases | |
| 3 | unitg 22882 | . . 3 ⊢ (ran (,) ∈ TopBases → ∪ (topGen‘ran (,)) = ∪ ran (,)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ∪ (topGen‘ran (,)) = ∪ ran (,) |
| 5 | 1, 4 | eqtr4i 2757 | 1 ⊢ ℝ = ∪ (topGen‘ran (,)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∪ cuni 4856 ran crn 5615 ‘cfv 6481 ℝcr 11005 (,)cioo 13245 topGenctg 17341 TopBasesctb 22860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-ioo 13249 df-topgen 17347 df-bases 22861 |
| This theorem is referenced by: retopon 24678 retps 24679 icccld 24681 icopnfcld 24682 iocmnfcld 24683 qdensere 24684 zcld 24729 iccntr 24737 icccmp 24741 retopconn 24745 opnreen 24747 rectbntr0 24748 cnmpopc 24849 evth 24885 evth2 24886 evthicc 25387 ovolicc2 25450 opnmbllem 25529 lhop 25948 dvcnvrelem2 25950 dvcnvre 25951 ftc1 25976 taylthlem2 26309 taylthlem2OLD 26310 ipasslem8 30817 circtopn 33850 tpr2rico 33925 rrhf 34011 rrhqima 34027 rrhre 34034 brsigarn 34197 unibrsiga 34199 sxbrsigalem3 34285 dya2iocucvr 34297 sxbrsigalem1 34298 orrvcval4 34478 orrvcoel 34479 orrvccel 34480 retopsconn 35293 cvmliftlem10 35338 ivthALT 36379 ptrecube 37659 poimirlem29 37688 poimirlem30 37689 poimirlem31 37690 opnmbllem0 37695 mblfinlem1 37696 mblfinlem2 37697 mblfinlem3 37698 mblfinlem4 37699 ismblfin 37700 ftc1cnnc 37731 readvrec2 42453 refsum2cnlem1 45133 sncldre 45140 reopn 45389 ioontr 45610 limciccioolb 45720 limcicciooub 45734 lptre2pt 45737 limclner 45748 limclr 45752 cncfiooicclem1 45990 fperdvper 46016 itgsubsticclem 46072 stoweidlem62 46159 dirkercncflem2 46201 dirkercncflem3 46202 dirkercncflem4 46203 fourierdlem42 46246 fourierdlem58 46261 fourierdlem73 46276 fouriercnp 46323 fouriercn 46329 cnfsmf 46837 incsmf 46839 decsmf 46864 smfpimbor1lem2 46896 |
| Copyright terms: Public domain | W3C validator |