| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniretop | Structured version Visualization version GIF version | ||
| Description: The underlying set of the standard topology on the reals is the reals. (Contributed by FL, 4-Jun-2007.) |
| Ref | Expression |
|---|---|
| uniretop | ⊢ ℝ = ∪ (topGen‘ran (,)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unirnioo 13352 | . 2 ⊢ ℝ = ∪ ran (,) | |
| 2 | retopbas 24646 | . . 3 ⊢ ran (,) ∈ TopBases | |
| 3 | unitg 22852 | . . 3 ⊢ (ran (,) ∈ TopBases → ∪ (topGen‘ran (,)) = ∪ ran (,)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ∪ (topGen‘ran (,)) = ∪ ran (,) |
| 5 | 1, 4 | eqtr4i 2755 | 1 ⊢ ℝ = ∪ (topGen‘ran (,)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∪ cuni 4858 ran crn 5620 ‘cfv 6482 ℝcr 11008 (,)cioo 13248 topGenctg 17341 TopBasesctb 22830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-ioo 13252 df-topgen 17347 df-bases 22831 |
| This theorem is referenced by: retopon 24649 retps 24650 icccld 24652 icopnfcld 24653 iocmnfcld 24654 qdensere 24655 zcld 24700 iccntr 24708 icccmp 24712 retopconn 24716 opnreen 24718 rectbntr0 24719 cnmpopc 24820 evth 24856 evth2 24857 evthicc 25358 ovolicc2 25421 opnmbllem 25500 lhop 25919 dvcnvrelem2 25921 dvcnvre 25922 ftc1 25947 taylthlem2 26280 taylthlem2OLD 26281 ipasslem8 30781 circtopn 33810 tpr2rico 33885 rrhf 33971 rrhqima 33987 rrhre 33994 brsigarn 34157 unibrsiga 34159 sxbrsigalem3 34246 dya2iocucvr 34258 sxbrsigalem1 34259 orrvcval4 34439 orrvcoel 34440 orrvccel 34441 retopsconn 35232 cvmliftlem10 35277 ivthALT 36319 ptrecube 37610 poimirlem29 37639 poimirlem30 37640 poimirlem31 37641 opnmbllem0 37646 mblfinlem1 37647 mblfinlem2 37648 mblfinlem3 37649 mblfinlem4 37650 ismblfin 37651 ftc1cnnc 37682 readvrec2 42344 refsum2cnlem1 45025 sncldre 45032 reopn 45281 ioontr 45502 limciccioolb 45612 limcicciooub 45628 lptre2pt 45631 limclner 45642 limclr 45646 cncfiooicclem1 45884 fperdvper 45910 itgsubsticclem 45966 stoweidlem62 46053 dirkercncflem2 46095 dirkercncflem3 46096 dirkercncflem4 46097 fourierdlem42 46140 fourierdlem58 46155 fourierdlem73 46170 fouriercnp 46217 fouriercn 46223 cnfsmf 46731 incsmf 46733 decsmf 46758 smfpimbor1lem2 46790 |
| Copyright terms: Public domain | W3C validator |