MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptuni Structured version   Visualization version   GIF version

Theorem ptuni 23481
Description: The base set for the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptuni.1 𝐽 = (∏t𝐹)
Assertion
Ref Expression
ptuni ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑥𝐴 (𝐹𝑥) = 𝐽)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑉
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem ptuni
Dummy variables 𝑔 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 {𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))} = {𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}
21ptbas 23466 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases)
3 unitg 22854 . . 3 ({𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases → (topGen‘{𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}) = {𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))})
42, 3syl 17 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → (topGen‘{𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}) = {𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))})
5 ptuni.1 . . . 4 𝐽 = (∏t𝐹)
6 ffn 6688 . . . . 5 (𝐹:𝐴⟶Top → 𝐹 Fn 𝐴)
71ptval 23457 . . . . 5 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘{𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}))
86, 7sylan2 593 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) = (topGen‘{𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}))
95, 8eqtrid 2776 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}))
109unieqd 4884 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}))
111ptuni2 23463 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑥𝐴 (𝐹𝑥) = {𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))})
124, 10, 113eqtr4rd 2775 1 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑥𝐴 (𝐹𝑥) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  cdif 3911   cuni 4871   Fn wfn 6506  wf 6507  cfv 6511  Xcixp 8870  Fincfn 8918  topGenctg 17400  tcpt 17401  Topctop 22780  TopBasesctb 22832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-2o 8435  df-ixp 8871  df-en 8919  df-fin 8922  df-fi 9362  df-topgen 17406  df-pt 17407  df-top 22781  df-bases 22833
This theorem is referenced by:  ptunimpt  23482  ptval2  23488  ptpjcn  23498  ptcld  23500  ptcn  23514  pthaus  23525  ptrescn  23526  ptuncnv  23694  ptunhmeo  23695  ptcmpfi  23700  ptcmplem1  23939  ptcmpg  23944  ptpconn  35220  ptrest  37613
  Copyright terms: Public domain W3C validator