MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptuni Structured version   Visualization version   GIF version

Theorem ptuni 23548
Description: The base set for the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptuni.1 𝐽 = (∏t𝐹)
Assertion
Ref Expression
ptuni ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑥𝐴 (𝐹𝑥) = 𝐽)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑉
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem ptuni
Dummy variables 𝑔 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . 4 {𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))} = {𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}
21ptbas 23533 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases)
3 unitg 22921 . . 3 ({𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases → (topGen‘{𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}) = {𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))})
42, 3syl 17 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → (topGen‘{𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}) = {𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))})
5 ptuni.1 . . . 4 𝐽 = (∏t𝐹)
6 ffn 6716 . . . . 5 (𝐹:𝐴⟶Top → 𝐹 Fn 𝐴)
71ptval 23524 . . . . 5 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘{𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}))
86, 7sylan2 593 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) = (topGen‘{𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}))
95, 8eqtrid 2781 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}))
109unieqd 4900 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}))
111ptuni2 23530 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑥𝐴 (𝐹𝑥) = {𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))})
124, 10, 113eqtr4rd 2780 1 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑥𝐴 (𝐹𝑥) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wex 1778  wcel 2107  {cab 2712  wral 3050  wrex 3059  cdif 3928   cuni 4887   Fn wfn 6536  wf 6537  cfv 6541  Xcixp 8919  Fincfn 8967  topGenctg 17453  tcpt 17454  Topctop 22847  TopBasesctb 22899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-om 7870  df-1o 8488  df-2o 8489  df-ixp 8920  df-en 8968  df-fin 8971  df-fi 9433  df-topgen 17459  df-pt 17460  df-top 22848  df-bases 22900
This theorem is referenced by:  ptunimpt  23549  ptval2  23555  ptpjcn  23565  ptcld  23567  ptcn  23581  pthaus  23592  ptrescn  23593  ptuncnv  23761  ptunhmeo  23762  ptcmpfi  23767  ptcmplem1  24006  ptcmpg  24011  ptpconn  35197  ptrest  37585
  Copyright terms: Public domain W3C validator