MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptuni Structured version   Visualization version   GIF version

Theorem ptuni 23504
Description: The base set for the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptuni.1 𝐽 = (∏t𝐹)
Assertion
Ref Expression
ptuni ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑥𝐴 (𝐹𝑥) = 𝐽)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑉
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem ptuni
Dummy variables 𝑔 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . 4 {𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))} = {𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}
21ptbas 23489 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases)
3 unitg 22877 . . 3 ({𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases → (topGen‘{𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}) = {𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))})
42, 3syl 17 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → (topGen‘{𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}) = {𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))})
5 ptuni.1 . . . 4 𝐽 = (∏t𝐹)
6 ffn 6646 . . . . 5 (𝐹:𝐴⟶Top → 𝐹 Fn 𝐴)
71ptval 23480 . . . . 5 ((𝐴𝑉𝐹 Fn 𝐴) → (∏t𝐹) = (topGen‘{𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}))
86, 7sylan2 593 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) = (topGen‘{𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}))
95, 8eqtrid 2778 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}))
109unieqd 4867 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐽 = (topGen‘{𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))}))
111ptuni2 23486 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑥𝐴 (𝐹𝑥) = {𝑘 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑘 = X𝑦𝐴 (𝑔𝑦))})
124, 10, 113eqtr4rd 2777 1 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑥𝐴 (𝐹𝑥) = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  wrex 3056  cdif 3894   cuni 4854   Fn wfn 6471  wf 6472  cfv 6476  Xcixp 8816  Fincfn 8864  topGenctg 17336  tcpt 17337  Topctop 22803  TopBasesctb 22855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-om 7792  df-1o 8380  df-2o 8381  df-ixp 8817  df-en 8865  df-fin 8868  df-fi 9290  df-topgen 17342  df-pt 17343  df-top 22804  df-bases 22856
This theorem is referenced by:  ptunimpt  23505  ptval2  23511  ptpjcn  23521  ptcld  23523  ptcn  23537  pthaus  23548  ptrescn  23549  ptuncnv  23717  ptunhmeo  23718  ptcmpfi  23723  ptcmplem1  23962  ptcmpg  23967  ptpconn  35269  ptrest  37659
  Copyright terms: Public domain W3C validator