![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapevec | Structured version Visualization version GIF version |
Description: Value of map from vectors to functionals at the reference vector ๐ธ. (Contributed by NM, 16-May-2015.) |
Ref | Expression |
---|---|
hdmapevec.h | โข ๐ป = (LHypโ๐พ) |
hdmapevec.e | โข ๐ธ = โจ( I โพ (Baseโ๐พ)), ( I โพ ((LTrnโ๐พ)โ๐))โฉ |
hdmapevec.j | โข ๐ฝ = ((HVMapโ๐พ)โ๐) |
hdmapevec.s | โข ๐ = ((HDMapโ๐พ)โ๐) |
hdmapevec.k | โข (๐ โ (๐พ โ HL โง ๐ โ ๐ป)) |
Ref | Expression |
---|---|
hdmapevec | โข (๐ โ (๐โ๐ธ) = (๐ฝโ๐ธ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapevec.h | . . 3 โข ๐ป = (LHypโ๐พ) | |
2 | eqid 2724 | . . 3 โข ((DVecHโ๐พ)โ๐) = ((DVecHโ๐พ)โ๐) | |
3 | eqid 2724 | . . 3 โข (Baseโ((DVecHโ๐พ)โ๐)) = (Baseโ((DVecHโ๐พ)โ๐)) | |
4 | eqid 2724 | . . 3 โข (LSpanโ((DVecHโ๐พ)โ๐)) = (LSpanโ((DVecHโ๐พ)โ๐)) | |
5 | hdmapevec.k | . . 3 โข (๐ โ (๐พ โ HL โง ๐ โ ๐ป)) | |
6 | eqid 2724 | . . . . 5 โข (Baseโ๐พ) = (Baseโ๐พ) | |
7 | eqid 2724 | . . . . 5 โข ((LTrnโ๐พ)โ๐) = ((LTrnโ๐พ)โ๐) | |
8 | eqid 2724 | . . . . 5 โข (0gโ((DVecHโ๐พ)โ๐)) = (0gโ((DVecHโ๐พ)โ๐)) | |
9 | hdmapevec.e | . . . . 5 โข ๐ธ = โจ( I โพ (Baseโ๐พ)), ( I โพ ((LTrnโ๐พ)โ๐))โฉ | |
10 | 1, 6, 7, 2, 3, 8, 9, 5 | dvheveccl 40439 | . . . 4 โข (๐ โ ๐ธ โ ((Baseโ((DVecHโ๐พ)โ๐)) โ {(0gโ((DVecHโ๐พ)โ๐))})) |
11 | 10 | eldifad 3952 | . . 3 โข (๐ โ ๐ธ โ (Baseโ((DVecHโ๐พ)โ๐))) |
12 | 1, 2, 3, 4, 5, 11 | dvh2dim 40772 | . 2 โข (๐ โ โ๐ง โ (Baseโ((DVecHโ๐พ)โ๐)) ยฌ ๐ง โ ((LSpanโ((DVecHโ๐พ)โ๐))โ{๐ธ})) |
13 | hdmapevec.j | . . . 4 โข ๐ฝ = ((HVMapโ๐พ)โ๐) | |
14 | hdmapevec.s | . . . 4 โข ๐ = ((HDMapโ๐พ)โ๐) | |
15 | 5 | 3ad2ant1 1130 | . . . 4 โข ((๐ โง ๐ง โ (Baseโ((DVecHโ๐พ)โ๐)) โง ยฌ ๐ง โ ((LSpanโ((DVecHโ๐พ)โ๐))โ{๐ธ})) โ (๐พ โ HL โง ๐ โ ๐ป)) |
16 | eqid 2724 | . . . 4 โข ((LCDualโ๐พ)โ๐) = ((LCDualโ๐พ)โ๐) | |
17 | eqid 2724 | . . . 4 โข (Baseโ((LCDualโ๐พ)โ๐)) = (Baseโ((LCDualโ๐พ)โ๐)) | |
18 | eqid 2724 | . . . 4 โข ((HDMap1โ๐พ)โ๐) = ((HDMap1โ๐พ)โ๐) | |
19 | simp2 1134 | . . . 4 โข ((๐ โง ๐ง โ (Baseโ((DVecHโ๐พ)โ๐)) โง ยฌ ๐ง โ ((LSpanโ((DVecHโ๐พ)โ๐))โ{๐ธ})) โ ๐ง โ (Baseโ((DVecHโ๐พ)โ๐))) | |
20 | ssid 3996 | . . . . . . . 8 โข ((LSpanโ((DVecHโ๐พ)โ๐))โ{๐ธ}) โ ((LSpanโ((DVecHโ๐พ)โ๐))โ{๐ธ}) | |
21 | 20, 20 | unssi 4177 | . . . . . . 7 โข (((LSpanโ((DVecHโ๐พ)โ๐))โ{๐ธ}) โช ((LSpanโ((DVecHโ๐พ)โ๐))โ{๐ธ})) โ ((LSpanโ((DVecHโ๐พ)โ๐))โ{๐ธ}) |
22 | 21 | sseli 3970 | . . . . . 6 โข (๐ง โ (((LSpanโ((DVecHโ๐พ)โ๐))โ{๐ธ}) โช ((LSpanโ((DVecHโ๐พ)โ๐))โ{๐ธ})) โ ๐ง โ ((LSpanโ((DVecHโ๐พ)โ๐))โ{๐ธ})) |
23 | 22 | con3i 154 | . . . . 5 โข (ยฌ ๐ง โ ((LSpanโ((DVecHโ๐พ)โ๐))โ{๐ธ}) โ ยฌ ๐ง โ (((LSpanโ((DVecHโ๐พ)โ๐))โ{๐ธ}) โช ((LSpanโ((DVecHโ๐พ)โ๐))โ{๐ธ}))) |
24 | 23 | 3ad2ant3 1132 | . . . 4 โข ((๐ โง ๐ง โ (Baseโ((DVecHโ๐พ)โ๐)) โง ยฌ ๐ง โ ((LSpanโ((DVecHโ๐พ)โ๐))โ{๐ธ})) โ ยฌ ๐ง โ (((LSpanโ((DVecHโ๐พ)โ๐))โ{๐ธ}) โช ((LSpanโ((DVecHโ๐พ)โ๐))โ{๐ธ}))) |
25 | 1, 9, 13, 14, 15, 2, 3, 4, 16, 17, 18, 19, 24 | hdmapeveclem 41161 | . . 3 โข ((๐ โง ๐ง โ (Baseโ((DVecHโ๐พ)โ๐)) โง ยฌ ๐ง โ ((LSpanโ((DVecHโ๐พ)โ๐))โ{๐ธ})) โ (๐โ๐ธ) = (๐ฝโ๐ธ)) |
26 | 25 | rexlimdv3a 3151 | . 2 โข (๐ โ (โ๐ง โ (Baseโ((DVecHโ๐พ)โ๐)) ยฌ ๐ง โ ((LSpanโ((DVecHโ๐พ)โ๐))โ{๐ธ}) โ (๐โ๐ธ) = (๐ฝโ๐ธ))) |
27 | 12, 26 | mpd 15 | 1 โข (๐ โ (๐โ๐ธ) = (๐ฝโ๐ธ)) |
Colors of variables: wff setvar class |
Syntax hints: ยฌ wn 3 โ wi 4 โง wa 395 โง w3a 1084 = wceq 1533 โ wcel 2098 โwrex 3062 โช cun 3938 {csn 4620 โจcop 4626 I cid 5563 โพ cres 5668 โcfv 6533 Basecbs 17142 0gc0g 17383 LSpanclspn 20807 HLchlt 38676 LHypclh 39311 LTrncltrn 39428 DVecHcdvh 40405 LCDualclcd 40913 HVMapchvm 41083 HDMap1chdma1 41118 HDMapchdma 41119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-riotaBAD 38279 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-ot 4629 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-tpos 8206 df-undef 8253 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-struct 17078 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-plusg 17208 df-mulr 17209 df-sca 17211 df-vsca 17212 df-0g 17385 df-mre 17528 df-mrc 17529 df-acs 17531 df-proset 18249 df-poset 18267 df-plt 18284 df-lub 18300 df-glb 18301 df-join 18302 df-meet 18303 df-p0 18379 df-p1 18380 df-lat 18386 df-clat 18453 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-submnd 18703 df-grp 18855 df-minusg 18856 df-sbg 18857 df-subg 19039 df-cntz 19222 df-oppg 19251 df-lsm 19545 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-dvr 20292 df-drng 20578 df-lmod 20697 df-lss 20768 df-lsp 20808 df-lvec 20940 df-lsatoms 38302 df-lshyp 38303 df-lcv 38345 df-lfl 38384 df-lkr 38412 df-ldual 38450 df-oposet 38502 df-ol 38504 df-oml 38505 df-covers 38592 df-ats 38593 df-atl 38624 df-cvlat 38648 df-hlat 38677 df-llines 38825 df-lplanes 38826 df-lvols 38827 df-lines 38828 df-psubsp 38830 df-pmap 38831 df-padd 39123 df-lhyp 39315 df-laut 39316 df-ldil 39431 df-ltrn 39432 df-trl 39486 df-tgrp 40070 df-tendo 40082 df-edring 40084 df-dveca 40330 df-disoa 40356 df-dvech 40406 df-dib 40466 df-dic 40500 df-dih 40556 df-doch 40675 df-djh 40722 df-lcdual 40914 df-mapd 40952 df-hvmap 41084 df-hdmap1 41120 df-hdmap 41121 |
This theorem is referenced by: hdmapevec2 41163 hdmapval3lemN 41164 |
Copyright terms: Public domain | W3C validator |