MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashxrcl Structured version   Visualization version   GIF version

Theorem hashxrcl 14298
Description: Extended real closure of the function. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
hashxrcl (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)

Proof of Theorem hashxrcl
StepHypRef Expression
1 nn0ssre 12422 . . . 4 0 ⊆ ℝ
2 ressxr 11194 . . . 4 ℝ ⊆ ℝ*
31, 2sstri 3953 . . 3 0 ⊆ ℝ*
4 pnfxr 11204 . . . 4 +∞ ∈ ℝ*
5 snssi 4768 . . . 4 (+∞ ∈ ℝ* → {+∞} ⊆ ℝ*)
64, 5ax-mp 5 . . 3 {+∞} ⊆ ℝ*
73, 6unssi 4150 . 2 (ℕ0 ∪ {+∞}) ⊆ ℝ*
8 elex 3465 . . 3 (𝐴𝑉𝐴 ∈ V)
9 hashf 14279 . . . 4 ♯:V⟶(ℕ0 ∪ {+∞})
109ffvelcdmi 7037 . . 3 (𝐴 ∈ V → (♯‘𝐴) ∈ (ℕ0 ∪ {+∞}))
118, 10syl 17 . 2 (𝐴𝑉 → (♯‘𝐴) ∈ (ℕ0 ∪ {+∞}))
127, 11sselid 3941 1 (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3444  cun 3909  wss 3911  {csn 4585  cfv 6499  cr 11043  +∞cpnf 11181  *cxr 11183  0cn0 12418  chash 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-hash 14272
This theorem is referenced by:  nfile  14300  hashdom  14320  hashinfxadd  14326  hashunx  14327  hashgt0  14329  hashunsnggt  14335  hashle00  14341  hashgt0elex  14342  hashss  14350  hashgt12el  14363  hashgt12el2  14364  hashgt23el  14365  ramtlecl  16947  0ram  16967  isnzr2hash  20404  0ringnnzr  20410  ewlkle  29509  upgrewlkle2  29510  hashxpe  32705  hashpss  32707  lbslelsp  33566  esumcst  34026  esumpinfval  34036  lfuhgr2  35079  acycgr2v  35110  aks6d1c6lem2  42132  aks6d1c7lem2  42142  unitscyglem5  42160  idomodle  43153
  Copyright terms: Public domain W3C validator