MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashxrcl Structured version   Visualization version   GIF version

Theorem hashxrcl 14000
Description: Extended real closure of the function. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
hashxrcl (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)

Proof of Theorem hashxrcl
StepHypRef Expression
1 nn0ssre 12167 . . . 4 0 ⊆ ℝ
2 ressxr 10950 . . . 4 ℝ ⊆ ℝ*
31, 2sstri 3926 . . 3 0 ⊆ ℝ*
4 pnfxr 10960 . . . 4 +∞ ∈ ℝ*
5 snssi 4738 . . . 4 (+∞ ∈ ℝ* → {+∞} ⊆ ℝ*)
64, 5ax-mp 5 . . 3 {+∞} ⊆ ℝ*
73, 6unssi 4115 . 2 (ℕ0 ∪ {+∞}) ⊆ ℝ*
8 elex 3440 . . 3 (𝐴𝑉𝐴 ∈ V)
9 hashf 13980 . . . 4 ♯:V⟶(ℕ0 ∪ {+∞})
109ffvelrni 6942 . . 3 (𝐴 ∈ V → (♯‘𝐴) ∈ (ℕ0 ∪ {+∞}))
118, 10syl 17 . 2 (𝐴𝑉 → (♯‘𝐴) ∈ (ℕ0 ∪ {+∞}))
127, 11sselid 3915 1 (𝐴𝑉 → (♯‘𝐴) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3422  cun 3881  wss 3883  {csn 4558  cfv 6418  cr 10801  +∞cpnf 10937  *cxr 10939  0cn0 12163  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-hash 13973
This theorem is referenced by:  nfile  14002  hashdom  14022  hashinfxadd  14028  hashunx  14029  hashgt0  14031  hashunsnggt  14037  hashle00  14043  hashgt0elex  14044  hashss  14052  hashgt12el  14065  hashgt12el2  14066  hashgt23el  14067  ramtlecl  16629  0ram  16649  isnzr2hash  20448  0ringnnzr  20453  ewlkle  27875  upgrewlkle2  27876  hashxpe  31029  esumcst  31931  esumpinfval  31941  lfuhgr2  32980  acycgr2v  33012  idomodle  40937
  Copyright terms: Public domain W3C validator