| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uptposlem | Structured version Visualization version GIF version | ||
| Description: Lemma for uptpos 48997. (Contributed by Zhi Wang, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppcuprcl2.x | ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝑂UP𝑃)𝑊)𝑀) |
| uptpos.h | ⊢ (𝜑 → tpos 𝐺 = 𝐻) |
| Ref | Expression |
|---|---|
| uptposlem | ⊢ (𝜑 → tpos 𝐻 = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptpos.h | . . 3 ⊢ (𝜑 → tpos 𝐺 = 𝐻) | |
| 2 | 1 | tposeqd 8223 | . 2 ⊢ (𝜑 → tpos tpos 𝐺 = tpos 𝐻) |
| 3 | eqid 2734 | . . . . 5 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
| 4 | oppcuprcl2.x | . . . . . 6 ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝑂UP𝑃)𝑊)𝑀) | |
| 5 | 4 | uprcl2 48989 | . . . . 5 ⊢ (𝜑 → 𝐹(𝑂 Func 𝑃)𝐺) |
| 6 | 3, 5 | funcfn2 17869 | . . . 4 ⊢ (𝜑 → 𝐺 Fn ((Base‘𝑂) × (Base‘𝑂))) |
| 7 | fnrel 6637 | . . . 4 ⊢ (𝐺 Fn ((Base‘𝑂) × (Base‘𝑂)) → Rel 𝐺) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → Rel 𝐺) |
| 9 | relxp 5670 | . . . 4 ⊢ Rel ((Base‘𝑂) × (Base‘𝑂)) | |
| 10 | 6 | fndmd 6640 | . . . . 5 ⊢ (𝜑 → dom 𝐺 = ((Base‘𝑂) × (Base‘𝑂))) |
| 11 | 10 | releqd 5755 | . . . 4 ⊢ (𝜑 → (Rel dom 𝐺 ↔ Rel ((Base‘𝑂) × (Base‘𝑂)))) |
| 12 | 9, 11 | mpbiri 258 | . . 3 ⊢ (𝜑 → Rel dom 𝐺) |
| 13 | tpostpos2 8241 | . . 3 ⊢ ((Rel 𝐺 ∧ Rel dom 𝐺) → tpos tpos 𝐺 = 𝐺) | |
| 14 | 8, 12, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → tpos tpos 𝐺 = 𝐺) |
| 15 | 2, 14 | eqtr3d 2771 | 1 ⊢ (𝜑 → tpos 𝐻 = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 〈cop 4605 class class class wbr 5117 × cxp 5650 dom cdm 5652 Rel wrel 5657 Fn wfn 6523 ‘cfv 6528 (class class class)co 7400 tpos ctpos 8219 Basecbs 17215 UPcup 48974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-tpos 8220 df-map 8837 df-ixp 8907 df-func 17858 df-up 48975 |
| This theorem is referenced by: uptpos 48997 |
| Copyright terms: Public domain | W3C validator |