| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uptposlem | Structured version Visualization version GIF version | ||
| Description: Lemma for uptpos 49180. (Contributed by Zhi Wang, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppcuprcl2.x | ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀) |
| uptpos.h | ⊢ (𝜑 → tpos 𝐺 = 𝐻) |
| Ref | Expression |
|---|---|
| uptposlem | ⊢ (𝜑 → tpos 𝐻 = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptpos.h | . . 3 ⊢ (𝜑 → tpos 𝐺 = 𝐻) | |
| 2 | 1 | tposeqd 8185 | . 2 ⊢ (𝜑 → tpos tpos 𝐺 = tpos 𝐻) |
| 3 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
| 4 | oppcuprcl2.x | . . . . . 6 ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀) | |
| 5 | 4 | uprcl2 49171 | . . . . 5 ⊢ (𝜑 → 𝐹(𝑂 Func 𝑃)𝐺) |
| 6 | 3, 5 | funcfn2 17811 | . . . 4 ⊢ (𝜑 → 𝐺 Fn ((Base‘𝑂) × (Base‘𝑂))) |
| 7 | fnrel 6602 | . . . 4 ⊢ (𝐺 Fn ((Base‘𝑂) × (Base‘𝑂)) → Rel 𝐺) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → Rel 𝐺) |
| 9 | relxp 5649 | . . . 4 ⊢ Rel ((Base‘𝑂) × (Base‘𝑂)) | |
| 10 | 6 | fndmd 6605 | . . . . 5 ⊢ (𝜑 → dom 𝐺 = ((Base‘𝑂) × (Base‘𝑂))) |
| 11 | 10 | releqd 5733 | . . . 4 ⊢ (𝜑 → (Rel dom 𝐺 ↔ Rel ((Base‘𝑂) × (Base‘𝑂)))) |
| 12 | 9, 11 | mpbiri 258 | . . 3 ⊢ (𝜑 → Rel dom 𝐺) |
| 13 | tpostpos2 8203 | . . 3 ⊢ ((Rel 𝐺 ∧ Rel dom 𝐺) → tpos tpos 𝐺 = 𝐺) | |
| 14 | 8, 12, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → tpos tpos 𝐺 = 𝐺) |
| 15 | 2, 14 | eqtr3d 2766 | 1 ⊢ (𝜑 → tpos 𝐻 = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 〈cop 4591 class class class wbr 5102 × cxp 5629 dom cdm 5631 Rel wrel 5636 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 tpos ctpos 8181 Basecbs 17155 UP cup 49155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-tpos 8182 df-map 8778 df-ixp 8848 df-func 17800 df-up 49156 |
| This theorem is referenced by: uptpos 49180 |
| Copyright terms: Public domain | W3C validator |