| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uptposlem | Structured version Visualization version GIF version | ||
| Description: Lemma for uptpos 49309. (Contributed by Zhi Wang, 4-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppcuprcl2.x | ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀) |
| uptpos.h | ⊢ (𝜑 → tpos 𝐺 = 𝐻) |
| Ref | Expression |
|---|---|
| uptposlem | ⊢ (𝜑 → tpos 𝐻 = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptpos.h | . . 3 ⊢ (𝜑 → tpos 𝐺 = 𝐻) | |
| 2 | 1 | tposeqd 8159 | . 2 ⊢ (𝜑 → tpos tpos 𝐺 = tpos 𝐻) |
| 3 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
| 4 | oppcuprcl2.x | . . . . . 6 ⊢ (𝜑 → 𝑋(〈𝐹, 𝐺〉(𝑂 UP 𝑃)𝑊)𝑀) | |
| 5 | 4 | uprcl2 49300 | . . . . 5 ⊢ (𝜑 → 𝐹(𝑂 Func 𝑃)𝐺) |
| 6 | 3, 5 | funcfn2 17776 | . . . 4 ⊢ (𝜑 → 𝐺 Fn ((Base‘𝑂) × (Base‘𝑂))) |
| 7 | fnrel 6583 | . . . 4 ⊢ (𝐺 Fn ((Base‘𝑂) × (Base‘𝑂)) → Rel 𝐺) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → Rel 𝐺) |
| 9 | relxp 5632 | . . . 4 ⊢ Rel ((Base‘𝑂) × (Base‘𝑂)) | |
| 10 | 6 | fndmd 6586 | . . . . 5 ⊢ (𝜑 → dom 𝐺 = ((Base‘𝑂) × (Base‘𝑂))) |
| 11 | 10 | releqd 5718 | . . . 4 ⊢ (𝜑 → (Rel dom 𝐺 ↔ Rel ((Base‘𝑂) × (Base‘𝑂)))) |
| 12 | 9, 11 | mpbiri 258 | . . 3 ⊢ (𝜑 → Rel dom 𝐺) |
| 13 | tpostpos2 8177 | . . 3 ⊢ ((Rel 𝐺 ∧ Rel dom 𝐺) → tpos tpos 𝐺 = 𝐺) | |
| 14 | 8, 12, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → tpos tpos 𝐺 = 𝐺) |
| 15 | 2, 14 | eqtr3d 2768 | 1 ⊢ (𝜑 → tpos 𝐻 = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 〈cop 4579 class class class wbr 5089 × cxp 5612 dom cdm 5614 Rel wrel 5619 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 tpos ctpos 8155 Basecbs 17120 UP cup 49284 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-tpos 8156 df-map 8752 df-ixp 8822 df-func 17765 df-up 49285 |
| This theorem is referenced by: uptpos 49309 |
| Copyright terms: Public domain | W3C validator |