| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uptri | Structured version Visualization version GIF version | ||
| Description: Universal property and fully faithful functor. (Contributed by Zhi Wang, 16-Nov-2025.) |
| Ref | Expression |
|---|---|
| uptr.y | ⊢ (𝜑 → (𝑅‘𝑋) = 𝑌) |
| uptr.r | ⊢ (𝜑 → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆) |
| uptr.k | ⊢ (𝜑 → (〈𝑅, 𝑆〉 ∘func 〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) |
| uptri.n | ⊢ (𝜑 → ((𝑋𝑆(𝐹‘𝑍))‘𝑀) = 𝑁) |
| uptri.z | ⊢ (𝜑 → 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) |
| Ref | Expression |
|---|---|
| uptri | ⊢ (𝜑 → 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uptri.z | . 2 ⊢ (𝜑 → 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) | |
| 2 | uptr.y | . . . . 5 ⊢ (𝜑 → (𝑅‘𝑋) = 𝑌) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → (𝑅‘𝑋) = 𝑌) |
| 4 | uptr.r | . . . . 5 ⊢ (𝜑 → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → 𝑅((𝐷 Full 𝐸) ∩ (𝐷 Faith 𝐸))𝑆) |
| 6 | uptr.k | . . . . 5 ⊢ (𝜑 → (〈𝑅, 𝑆〉 ∘func 〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → (〈𝑅, 𝑆〉 ∘func 〈𝐹, 𝐺〉) = 〈𝐾, 𝐿〉) |
| 8 | eqid 2729 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 9 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) |
| 10 | 9, 8 | uprcl3 49163 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → 𝑋 ∈ (Base‘𝐷)) |
| 11 | 9 | uprcl2 49162 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → 𝐹(𝐶 Func 𝐷)𝐺) |
| 12 | uptri.n | . . . . 5 ⊢ (𝜑 → ((𝑋𝑆(𝐹‘𝑍))‘𝑀) = 𝑁) | |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → ((𝑋𝑆(𝐹‘𝑍))‘𝑀) = 𝑁) |
| 14 | eqid 2729 | . . . 4 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 15 | 9, 14 | uprcl5 49165 | . . . 4 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → 𝑀 ∈ (𝑋(Hom ‘𝐷)(𝐹‘𝑍))) |
| 16 | 3, 5, 7, 8, 10, 11, 13, 14, 15 | uptr 49186 | . . 3 ⊢ ((𝜑 ∧ 𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀) → (𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁)) |
| 17 | 1, 16 | mpdan 687 | . 2 ⊢ (𝜑 → (𝑍(〈𝐹, 𝐺〉(𝐶 UP 𝐷)𝑋)𝑀 ↔ 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁)) |
| 18 | 1, 17 | mpbid 232 | 1 ⊢ (𝜑 → 𝑍(〈𝐾, 𝐿〉(𝐶 UP 𝐸)𝑌)𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∩ cin 3904 〈cop 4585 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Hom chom 17190 ∘func ccofu 17781 Full cful 17829 Faith cfth 17830 UP cup 49146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 df-ixp 8832 df-cat 17592 df-cid 17593 df-func 17783 df-cofu 17785 df-full 17831 df-fth 17832 df-up 49147 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |