Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrlimlem1 Structured version   Visualization version   GIF version

Theorem uspgrlimlem1 48019
Description: Lemma 1 for uspgrlim 48023. (Contributed by AV, 16-Aug-2025.)
Hypotheses
Ref Expression
uspgrlimlem1.m 𝑀 = (𝐻 ClNeighbVtx 𝑋)
uspgrlimlem1.j 𝐽 = (Edg‘𝐻)
uspgrlimlem1.l 𝐿 = {𝑥𝐽𝑥𝑀}
Assertion
Ref Expression
uspgrlimlem1 (𝐻 ∈ USPGraph → 𝐿 = ((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}))
Distinct variable groups:   𝑥,𝐻   𝑥,𝐽   𝑥,𝑀
Allowed substitution hints:   𝐿(𝑥)   𝑋(𝑥)

Proof of Theorem uspgrlimlem1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uspgrlimlem1.l . 2 𝐿 = {𝑥𝐽𝑥𝑀}
2 eqid 2731 . . . . . 6 (iEdg‘𝐻) = (iEdg‘𝐻)
32uspgrf1oedg 29146 . . . . 5 (𝐻 ∈ USPGraph → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻))
4 f1of 6758 . . . . 5 ((iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶(Edg‘𝐻))
53, 4syl 17 . . . 4 (𝐻 ∈ USPGraph → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶(Edg‘𝐻))
6 ssrab2 4025 . . . 4 {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ⊆ dom (iEdg‘𝐻)
7 fimarab 6891 . . . 4 (((iEdg‘𝐻):dom (iEdg‘𝐻)⟶(Edg‘𝐻) ∧ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ⊆ dom (iEdg‘𝐻)) → ((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}) = {𝑦 ∈ (Edg‘𝐻) ∣ ∃𝑧 ∈ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ((iEdg‘𝐻)‘𝑧) = 𝑦})
85, 6, 7sylancl 586 . . 3 (𝐻 ∈ USPGraph → ((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}) = {𝑦 ∈ (Edg‘𝐻) ∣ ∃𝑧 ∈ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ((iEdg‘𝐻)‘𝑧) = 𝑦})
9 uspgrlimlem1.j . . . . . 6 𝐽 = (Edg‘𝐻)
109eqcomi 2740 . . . . 5 (Edg‘𝐻) = 𝐽
1110a1i 11 . . . 4 (𝐻 ∈ USPGraph → (Edg‘𝐻) = 𝐽)
12 fveq2 6817 . . . . . . 7 (𝑥 = 𝑧 → ((iEdg‘𝐻)‘𝑥) = ((iEdg‘𝐻)‘𝑧))
1312sseq1d 3961 . . . . . 6 (𝑥 = 𝑧 → (((iEdg‘𝐻)‘𝑥) ⊆ 𝑀 ↔ ((iEdg‘𝐻)‘𝑧) ⊆ 𝑀))
1413rexrab 3650 . . . . 5 (∃𝑧 ∈ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ((iEdg‘𝐻)‘𝑧) = 𝑦 ↔ ∃𝑧 ∈ dom (iEdg‘𝐻)(((iEdg‘𝐻)‘𝑧) ⊆ 𝑀 ∧ ((iEdg‘𝐻)‘𝑧) = 𝑦))
15 sseq1 3955 . . . . . . . 8 (((iEdg‘𝐻)‘𝑧) = 𝑦 → (((iEdg‘𝐻)‘𝑧) ⊆ 𝑀𝑦𝑀))
1615biimpac 478 . . . . . . 7 ((((iEdg‘𝐻)‘𝑧) ⊆ 𝑀 ∧ ((iEdg‘𝐻)‘𝑧) = 𝑦) → 𝑦𝑀)
1716a1i 11 . . . . . 6 (((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) ∧ 𝑧 ∈ dom (iEdg‘𝐻)) → ((((iEdg‘𝐻)‘𝑧) ⊆ 𝑀 ∧ ((iEdg‘𝐻)‘𝑧) = 𝑦) → 𝑦𝑀))
18 f1ocnv 6770 . . . . . . . . 9 ((iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) → (iEdg‘𝐻):(Edg‘𝐻)–1-1-onto→dom (iEdg‘𝐻))
19 f1of 6758 . . . . . . . . 9 ((iEdg‘𝐻):(Edg‘𝐻)–1-1-onto→dom (iEdg‘𝐻) → (iEdg‘𝐻):(Edg‘𝐻)⟶dom (iEdg‘𝐻))
203, 18, 193syl 18 . . . . . . . 8 (𝐻 ∈ USPGraph → (iEdg‘𝐻):(Edg‘𝐻)⟶dom (iEdg‘𝐻))
2120ffvelcdmda 7012 . . . . . . 7 ((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) → ((iEdg‘𝐻)‘𝑦) ∈ dom (iEdg‘𝐻))
2221adantr 480 . . . . . 6 (((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) ∧ 𝑦𝑀) → ((iEdg‘𝐻)‘𝑦) ∈ dom (iEdg‘𝐻))
23 f1ocnvfv2 7206 . . . . . . . . 9 (((iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) ∧ 𝑦 ∈ (Edg‘𝐻)) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = 𝑦)
243, 23sylan 580 . . . . . . . 8 ((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = 𝑦)
2524adantr 480 . . . . . . 7 (((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) ∧ 𝑦𝑀) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = 𝑦)
26 sseq1 3955 . . . . . . . . . . 11 (𝑦 = ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) → (𝑦𝑀 ↔ ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀))
2726eqcoms 2739 . . . . . . . . . 10 (((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = 𝑦 → (𝑦𝑀 ↔ ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀))
2827biimpcd 249 . . . . . . . . 9 (𝑦𝑀 → (((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = 𝑦 → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀))
2928adantl 481 . . . . . . . 8 (((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) ∧ 𝑦𝑀) → (((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = 𝑦 → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀))
3029ancrd 551 . . . . . . 7 (((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) ∧ 𝑦𝑀) → (((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = 𝑦 → (((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀 ∧ ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = 𝑦)))
3125, 30mpd 15 . . . . . 6 (((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) ∧ 𝑦𝑀) → (((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀 ∧ ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = 𝑦))
32 fveq2 6817 . . . . . . . 8 (𝑧 = ((iEdg‘𝐻)‘𝑦) → ((iEdg‘𝐻)‘𝑧) = ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)))
3332sseq1d 3961 . . . . . . 7 (𝑧 = ((iEdg‘𝐻)‘𝑦) → (((iEdg‘𝐻)‘𝑧) ⊆ 𝑀 ↔ ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀))
34 fveqeq2 6826 . . . . . . 7 (𝑧 = ((iEdg‘𝐻)‘𝑦) → (((iEdg‘𝐻)‘𝑧) = 𝑦 ↔ ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = 𝑦))
3533, 34anbi12d 632 . . . . . 6 (𝑧 = ((iEdg‘𝐻)‘𝑦) → ((((iEdg‘𝐻)‘𝑧) ⊆ 𝑀 ∧ ((iEdg‘𝐻)‘𝑧) = 𝑦) ↔ (((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀 ∧ ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = 𝑦)))
3617, 22, 31, 35rspceb2dv 3576 . . . . 5 ((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) → (∃𝑧 ∈ dom (iEdg‘𝐻)(((iEdg‘𝐻)‘𝑧) ⊆ 𝑀 ∧ ((iEdg‘𝐻)‘𝑧) = 𝑦) ↔ 𝑦𝑀))
3714, 36bitrid 283 . . . 4 ((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) → (∃𝑧 ∈ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ((iEdg‘𝐻)‘𝑧) = 𝑦𝑦𝑀))
3811, 37rabeqbidva 3411 . . 3 (𝐻 ∈ USPGraph → {𝑦 ∈ (Edg‘𝐻) ∣ ∃𝑧 ∈ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ((iEdg‘𝐻)‘𝑧) = 𝑦} = {𝑦𝐽𝑦𝑀})
39 sseq1 3955 . . . . 5 (𝑦 = 𝑥 → (𝑦𝑀𝑥𝑀))
4039cbvrabv 3405 . . . 4 {𝑦𝐽𝑦𝑀} = {𝑥𝐽𝑥𝑀}
4140a1i 11 . . 3 (𝐻 ∈ USPGraph → {𝑦𝐽𝑦𝑀} = {𝑥𝐽𝑥𝑀})
428, 38, 413eqtrrd 2771 . 2 (𝐻 ∈ USPGraph → {𝑥𝐽𝑥𝑀} = ((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}))
431, 42eqtrid 2778 1 (𝐻 ∈ USPGraph → 𝐿 = ((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  wss 3897  ccnv 5610  dom cdm 5611  cima 5614  wf 6472  1-1-ontowf1o 6475  cfv 6476  (class class class)co 7341  iEdgciedg 28970  Edgcedg 29020  USPGraphcuspgr 29121   ClNeighbVtx cclnbgr 47849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-edg 29021  df-uspgr 29123
This theorem is referenced by:  uspgrlim  48023
  Copyright terms: Public domain W3C validator