Step | Hyp | Ref
| Expression |
1 | | uspgrlimlem1.l |
. 2
⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} |
2 | | eqid 2740 |
. . . . . 6
⊢
(iEdg‘𝐻) =
(iEdg‘𝐻) |
3 | 2 | uspgrf1oedg 29200 |
. . . . 5
⊢ (𝐻 ∈ USPGraph →
(iEdg‘𝐻):dom
(iEdg‘𝐻)–1-1-onto→(Edg‘𝐻)) |
4 | | f1of 6857 |
. . . . 5
⊢
((iEdg‘𝐻):dom
(iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶(Edg‘𝐻)) |
5 | 3, 4 | syl 17 |
. . . 4
⊢ (𝐻 ∈ USPGraph →
(iEdg‘𝐻):dom
(iEdg‘𝐻)⟶(Edg‘𝐻)) |
6 | | ssrab2 4103 |
. . . 4
⊢ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ⊆ dom (iEdg‘𝐻) |
7 | | fimarab 6991 |
. . . 4
⊢
(((iEdg‘𝐻):dom
(iEdg‘𝐻)⟶(Edg‘𝐻) ∧ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ⊆ dom (iEdg‘𝐻)) → ((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}) = {𝑦 ∈ (Edg‘𝐻) ∣ ∃𝑧 ∈ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ((iEdg‘𝐻)‘𝑧) = 𝑦}) |
8 | 5, 6, 7 | sylancl 585 |
. . 3
⊢ (𝐻 ∈ USPGraph →
((iEdg‘𝐻) “
{𝑥 ∈ dom
(iEdg‘𝐻) ∣
((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}) = {𝑦 ∈ (Edg‘𝐻) ∣ ∃𝑧 ∈ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ((iEdg‘𝐻)‘𝑧) = 𝑦}) |
9 | | uspgrlimlem1.j |
. . . . . 6
⊢ 𝐽 = (Edg‘𝐻) |
10 | 9 | eqcomi 2749 |
. . . . 5
⊢
(Edg‘𝐻) =
𝐽 |
11 | 10 | a1i 11 |
. . . 4
⊢ (𝐻 ∈ USPGraph →
(Edg‘𝐻) = 𝐽) |
12 | | fveq2 6915 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((iEdg‘𝐻)‘𝑥) = ((iEdg‘𝐻)‘𝑧)) |
13 | 12 | sseq1d 4040 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (((iEdg‘𝐻)‘𝑥) ⊆ 𝑀 ↔ ((iEdg‘𝐻)‘𝑧) ⊆ 𝑀)) |
14 | 13 | rexrab 3718 |
. . . . 5
⊢
(∃𝑧 ∈
{𝑥 ∈ dom
(iEdg‘𝐻) ∣
((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ((iEdg‘𝐻)‘𝑧) = 𝑦 ↔ ∃𝑧 ∈ dom (iEdg‘𝐻)(((iEdg‘𝐻)‘𝑧) ⊆ 𝑀 ∧ ((iEdg‘𝐻)‘𝑧) = 𝑦)) |
15 | | sseq1 4034 |
. . . . . . . 8
⊢
(((iEdg‘𝐻)‘𝑧) = 𝑦 → (((iEdg‘𝐻)‘𝑧) ⊆ 𝑀 ↔ 𝑦 ⊆ 𝑀)) |
16 | 15 | biimpac 478 |
. . . . . . 7
⊢
((((iEdg‘𝐻)‘𝑧) ⊆ 𝑀 ∧ ((iEdg‘𝐻)‘𝑧) = 𝑦) → 𝑦 ⊆ 𝑀) |
17 | 16 | a1i 11 |
. . . . . 6
⊢ (((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) ∧ 𝑧 ∈ dom (iEdg‘𝐻)) → ((((iEdg‘𝐻)‘𝑧) ⊆ 𝑀 ∧ ((iEdg‘𝐻)‘𝑧) = 𝑦) → 𝑦 ⊆ 𝑀)) |
18 | | f1ocnv 6869 |
. . . . . . . . 9
⊢
((iEdg‘𝐻):dom
(iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) → ◡(iEdg‘𝐻):(Edg‘𝐻)–1-1-onto→dom
(iEdg‘𝐻)) |
19 | | f1of 6857 |
. . . . . . . . 9
⊢ (◡(iEdg‘𝐻):(Edg‘𝐻)–1-1-onto→dom
(iEdg‘𝐻) → ◡(iEdg‘𝐻):(Edg‘𝐻)⟶dom (iEdg‘𝐻)) |
20 | 3, 18, 19 | 3syl 18 |
. . . . . . . 8
⊢ (𝐻 ∈ USPGraph → ◡(iEdg‘𝐻):(Edg‘𝐻)⟶dom (iEdg‘𝐻)) |
21 | 20 | ffvelcdmda 7113 |
. . . . . . 7
⊢ ((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) → (◡(iEdg‘𝐻)‘𝑦) ∈ dom (iEdg‘𝐻)) |
22 | 21 | adantr 480 |
. . . . . 6
⊢ (((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) ∧ 𝑦 ⊆ 𝑀) → (◡(iEdg‘𝐻)‘𝑦) ∈ dom (iEdg‘𝐻)) |
23 | | f1ocnvfv2 7308 |
. . . . . . . . 9
⊢
(((iEdg‘𝐻):dom
(iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) ∧ 𝑦 ∈ (Edg‘𝐻)) → ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) = 𝑦) |
24 | 3, 23 | sylan 579 |
. . . . . . . 8
⊢ ((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) → ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) = 𝑦) |
25 | 24 | adantr 480 |
. . . . . . 7
⊢ (((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) ∧ 𝑦 ⊆ 𝑀) → ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) = 𝑦) |
26 | | sseq1 4034 |
. . . . . . . . . . 11
⊢ (𝑦 = ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) → (𝑦 ⊆ 𝑀 ↔ ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) ⊆ 𝑀)) |
27 | 26 | eqcoms 2748 |
. . . . . . . . . 10
⊢
(((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) = 𝑦 → (𝑦 ⊆ 𝑀 ↔ ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) ⊆ 𝑀)) |
28 | 27 | biimpcd 249 |
. . . . . . . . 9
⊢ (𝑦 ⊆ 𝑀 → (((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) = 𝑦 → ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) ⊆ 𝑀)) |
29 | 28 | adantl 481 |
. . . . . . . 8
⊢ (((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) ∧ 𝑦 ⊆ 𝑀) → (((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) = 𝑦 → ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) ⊆ 𝑀)) |
30 | 29 | ancrd 551 |
. . . . . . 7
⊢ (((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) ∧ 𝑦 ⊆ 𝑀) → (((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) = 𝑦 → (((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) ⊆ 𝑀 ∧ ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) = 𝑦))) |
31 | 25, 30 | mpd 15 |
. . . . . 6
⊢ (((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) ∧ 𝑦 ⊆ 𝑀) → (((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) ⊆ 𝑀 ∧ ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) = 𝑦)) |
32 | | fveq2 6915 |
. . . . . . . 8
⊢ (𝑧 = (◡(iEdg‘𝐻)‘𝑦) → ((iEdg‘𝐻)‘𝑧) = ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦))) |
33 | 32 | sseq1d 4040 |
. . . . . . 7
⊢ (𝑧 = (◡(iEdg‘𝐻)‘𝑦) → (((iEdg‘𝐻)‘𝑧) ⊆ 𝑀 ↔ ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) ⊆ 𝑀)) |
34 | | fveqeq2 6924 |
. . . . . . 7
⊢ (𝑧 = (◡(iEdg‘𝐻)‘𝑦) → (((iEdg‘𝐻)‘𝑧) = 𝑦 ↔ ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) = 𝑦)) |
35 | 33, 34 | anbi12d 631 |
. . . . . 6
⊢ (𝑧 = (◡(iEdg‘𝐻)‘𝑦) → ((((iEdg‘𝐻)‘𝑧) ⊆ 𝑀 ∧ ((iEdg‘𝐻)‘𝑧) = 𝑦) ↔ (((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) ⊆ 𝑀 ∧ ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) = 𝑦))) |
36 | 17, 22, 31, 35 | rspceb2dv 3639 |
. . . . 5
⊢ ((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) → (∃𝑧 ∈ dom (iEdg‘𝐻)(((iEdg‘𝐻)‘𝑧) ⊆ 𝑀 ∧ ((iEdg‘𝐻)‘𝑧) = 𝑦) ↔ 𝑦 ⊆ 𝑀)) |
37 | 14, 36 | bitrid 283 |
. . . 4
⊢ ((𝐻 ∈ USPGraph ∧ 𝑦 ∈ (Edg‘𝐻)) → (∃𝑧 ∈ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ((iEdg‘𝐻)‘𝑧) = 𝑦 ↔ 𝑦 ⊆ 𝑀)) |
38 | 11, 37 | rabeqbidva 3460 |
. . 3
⊢ (𝐻 ∈ USPGraph → {𝑦 ∈ (Edg‘𝐻) ∣ ∃𝑧 ∈ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀} ((iEdg‘𝐻)‘𝑧) = 𝑦} = {𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ 𝑀}) |
39 | | sseq1 4034 |
. . . . 5
⊢ (𝑦 = 𝑥 → (𝑦 ⊆ 𝑀 ↔ 𝑥 ⊆ 𝑀)) |
40 | 39 | cbvrabv 3454 |
. . . 4
⊢ {𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ 𝑀} = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} |
41 | 40 | a1i 11 |
. . 3
⊢ (𝐻 ∈ USPGraph → {𝑦 ∈ 𝐽 ∣ 𝑦 ⊆ 𝑀} = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀}) |
42 | 8, 38, 41 | 3eqtrrd 2785 |
. 2
⊢ (𝐻 ∈ USPGraph → {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} = ((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})) |
43 | 1, 42 | eqtrid 2792 |
1
⊢ (𝐻 ∈ USPGraph → 𝐿 = ((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})) |