Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrlimlem2 Structured version   Visualization version   GIF version

Theorem uspgrlimlem2 47803
Description: Lemma 2 for uspgrlim 47806. (Contributed by AV, 16-Aug-2025.)
Hypotheses
Ref Expression
uspgrlimlem1.m 𝑀 = (𝐻 ClNeighbVtx 𝑋)
uspgrlimlem1.j 𝐽 = (Edg‘𝐻)
uspgrlimlem1.l 𝐿 = {𝑥𝐽𝑥𝑀}
Assertion
Ref Expression
uspgrlimlem2 (𝐻 ∈ USPGraph → ((iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})
Distinct variable groups:   𝑥,𝐻   𝑥,𝐽   𝑥,𝑀   𝑥,𝐿
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem uspgrlimlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . 5 (iEdg‘𝐻) = (iEdg‘𝐻)
21uspgrf1oedg 29200 . . . 4 (𝐻 ∈ USPGraph → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻))
3 f1ocnv 6869 . . . 4 ((iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) → (iEdg‘𝐻):(Edg‘𝐻)–1-1-onto→dom (iEdg‘𝐻))
4 f1of 6857 . . . 4 ((iEdg‘𝐻):(Edg‘𝐻)–1-1-onto→dom (iEdg‘𝐻) → (iEdg‘𝐻):(Edg‘𝐻)⟶dom (iEdg‘𝐻))
52, 3, 43syl 18 . . 3 (𝐻 ∈ USPGraph → (iEdg‘𝐻):(Edg‘𝐻)⟶dom (iEdg‘𝐻))
6 uspgrlimlem1.l . . . . 5 𝐿 = {𝑥𝐽𝑥𝑀}
7 uspgrlimlem1.j . . . . . 6 𝐽 = (Edg‘𝐻)
87rabeqi 3457 . . . . 5 {𝑥𝐽𝑥𝑀} = {𝑥 ∈ (Edg‘𝐻) ∣ 𝑥𝑀}
96, 8eqtri 2768 . . . 4 𝐿 = {𝑥 ∈ (Edg‘𝐻) ∣ 𝑥𝑀}
109ssrab3 4105 . . 3 𝐿 ⊆ (Edg‘𝐻)
11 fimarab 6991 . . 3 (((iEdg‘𝐻):(Edg‘𝐻)⟶dom (iEdg‘𝐻) ∧ 𝐿 ⊆ (Edg‘𝐻)) → ((iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥})
125, 10, 11sylancl 585 . 2 (𝐻 ∈ USPGraph → ((iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥})
13 sseq1 4034 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑀𝑦𝑀))
1413, 6elrab2 3711 . . . . . 6 (𝑦𝐿 ↔ (𝑦𝐽𝑦𝑀))
157eleq2i 2836 . . . . . . . . . . . . . . . . 17 (𝑦𝐽𝑦 ∈ (Edg‘𝐻))
1615biimpi 216 . . . . . . . . . . . . . . . 16 (𝑦𝐽𝑦 ∈ (Edg‘𝐻))
17 f1ocnvfv2 7308 . . . . . . . . . . . . . . . 16 (((iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) ∧ 𝑦 ∈ (Edg‘𝐻)) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = 𝑦)
182, 16, 17syl2an 595 . . . . . . . . . . . . . . 15 ((𝐻 ∈ USPGraph ∧ 𝑦𝐽) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = 𝑦)
1918eqcomd 2746 . . . . . . . . . . . . . 14 ((𝐻 ∈ USPGraph ∧ 𝑦𝐽) → 𝑦 = ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)))
2019sseq1d 4040 . . . . . . . . . . . . 13 ((𝐻 ∈ USPGraph ∧ 𝑦𝐽) → (𝑦𝑀 ↔ ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀))
2120biimpd 229 . . . . . . . . . . . 12 ((𝐻 ∈ USPGraph ∧ 𝑦𝐽) → (𝑦𝑀 → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀))
2221ex 412 . . . . . . . . . . 11 (𝐻 ∈ USPGraph → (𝑦𝐽 → (𝑦𝑀 → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀)))
2322adantr 480 . . . . . . . . . 10 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (𝑦𝐽 → (𝑦𝑀 → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀)))
2423imp32 418 . . . . . . . . 9 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ (𝑦𝐽𝑦𝑀)) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀)
25243adant3 1132 . . . . . . . 8 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ (𝑦𝐽𝑦𝑀) ∧ ((iEdg‘𝐻)‘𝑦) = 𝑥) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀)
26 fveq2 6915 . . . . . . . . . 10 (((iEdg‘𝐻)‘𝑦) = 𝑥 → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = ((iEdg‘𝐻)‘𝑥))
2726sseq1d 4040 . . . . . . . . 9 (((iEdg‘𝐻)‘𝑦) = 𝑥 → (((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀 ↔ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
28273ad2ant3 1135 . . . . . . . 8 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ (𝑦𝐽𝑦𝑀) ∧ ((iEdg‘𝐻)‘𝑦) = 𝑥) → (((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀 ↔ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
2925, 28mpbid 232 . . . . . . 7 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ (𝑦𝐽𝑦𝑀) ∧ ((iEdg‘𝐻)‘𝑦) = 𝑥) → ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀)
30293exp 1119 . . . . . 6 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → ((𝑦𝐽𝑦𝑀) → (((iEdg‘𝐻)‘𝑦) = 𝑥 → ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀)))
3114, 30biimtrid 242 . . . . 5 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (𝑦𝐿 → (((iEdg‘𝐻)‘𝑦) = 𝑥 → ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀)))
3231rexlimdv 3159 . . . 4 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥 → ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
33 fveqeq2 6924 . . . . . 6 (𝑦 = ((iEdg‘𝐻)‘𝑥) → (((iEdg‘𝐻)‘𝑦) = 𝑥 ↔ ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑥)) = 𝑥))
34 f1of 6857 . . . . . . . . . 10 ((iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶(Edg‘𝐻))
35 eqid 2740 . . . . . . . . . . . 12 dom (iEdg‘𝐻) = dom (iEdg‘𝐻)
367eqcomi 2749 . . . . . . . . . . . 12 (Edg‘𝐻) = 𝐽
3735, 36feq23i 6736 . . . . . . . . . . 11 ((iEdg‘𝐻):dom (iEdg‘𝐻)⟶(Edg‘𝐻) ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)⟶𝐽)
3837biimpi 216 . . . . . . . . . 10 ((iEdg‘𝐻):dom (iEdg‘𝐻)⟶(Edg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶𝐽)
392, 34, 383syl 18 . . . . . . . . 9 (𝐻 ∈ USPGraph → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶𝐽)
4039ffvelcdmda 7113 . . . . . . . 8 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘𝑥) ∈ 𝐽)
4140anim1i 614 . . . . . . 7 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀) → (((iEdg‘𝐻)‘𝑥) ∈ 𝐽 ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
42 sseq1 4034 . . . . . . . 8 (𝑦 = ((iEdg‘𝐻)‘𝑥) → (𝑦𝑀 ↔ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
4313, 42, 6elrab2w 3712 . . . . . . 7 (((iEdg‘𝐻)‘𝑥) ∈ 𝐿 ↔ (((iEdg‘𝐻)‘𝑥) ∈ 𝐽 ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
4441, 43sylibr 234 . . . . . 6 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀) → ((iEdg‘𝐻)‘𝑥) ∈ 𝐿)
45 f1ocnvfv1 7307 . . . . . . . 8 (((iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑥)) = 𝑥)
462, 45sylan 579 . . . . . . 7 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑥)) = 𝑥)
4746adantr 480 . . . . . 6 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑥)) = 𝑥)
4833, 44, 47rspcedvdw 3638 . . . . 5 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀) → ∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥)
4948ex 412 . . . 4 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘𝑥) ⊆ 𝑀 → ∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥))
5032, 49impbid 212 . . 3 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥 ↔ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
5150rabbidva 3450 . 2 (𝐻 ∈ USPGraph → {𝑥 ∈ dom (iEdg‘𝐻) ∣ ∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥} = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})
5212, 51eqtrd 2780 1 (𝐻 ∈ USPGraph → ((iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  wss 3976  ccnv 5694  dom cdm 5695  cima 5698  wf 6564  1-1-ontowf1o 6567  cfv 6568  (class class class)co 7443  iEdgciedg 29024  Edgcedg 29074  USPGraphcuspgr 29175   ClNeighbVtx cclnbgr 47682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-f1 6573  df-fo 6574  df-f1o 6575  df-fv 6576  df-edg 29075  df-uspgr 29177
This theorem is referenced by:  uspgrlim  47806
  Copyright terms: Public domain W3C validator