Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrlimlem2 Structured version   Visualization version   GIF version

Theorem uspgrlimlem2 47993
Description: Lemma 2 for uspgrlim 47996. (Contributed by AV, 16-Aug-2025.)
Hypotheses
Ref Expression
uspgrlimlem1.m 𝑀 = (𝐻 ClNeighbVtx 𝑋)
uspgrlimlem1.j 𝐽 = (Edg‘𝐻)
uspgrlimlem1.l 𝐿 = {𝑥𝐽𝑥𝑀}
Assertion
Ref Expression
uspgrlimlem2 (𝐻 ∈ USPGraph → ((iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})
Distinct variable groups:   𝑥,𝐻   𝑥,𝐽   𝑥,𝑀   𝑥,𝐿
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem uspgrlimlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 (iEdg‘𝐻) = (iEdg‘𝐻)
21uspgrf1oedg 29137 . . . 4 (𝐻 ∈ USPGraph → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻))
3 f1ocnv 6780 . . . 4 ((iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) → (iEdg‘𝐻):(Edg‘𝐻)–1-1-onto→dom (iEdg‘𝐻))
4 f1of 6768 . . . 4 ((iEdg‘𝐻):(Edg‘𝐻)–1-1-onto→dom (iEdg‘𝐻) → (iEdg‘𝐻):(Edg‘𝐻)⟶dom (iEdg‘𝐻))
52, 3, 43syl 18 . . 3 (𝐻 ∈ USPGraph → (iEdg‘𝐻):(Edg‘𝐻)⟶dom (iEdg‘𝐻))
6 uspgrlimlem1.l . . . . 5 𝐿 = {𝑥𝐽𝑥𝑀}
7 uspgrlimlem1.j . . . . . 6 𝐽 = (Edg‘𝐻)
87rabeqi 3410 . . . . 5 {𝑥𝐽𝑥𝑀} = {𝑥 ∈ (Edg‘𝐻) ∣ 𝑥𝑀}
96, 8eqtri 2752 . . . 4 𝐿 = {𝑥 ∈ (Edg‘𝐻) ∣ 𝑥𝑀}
109ssrab3 4035 . . 3 𝐿 ⊆ (Edg‘𝐻)
11 fimarab 6901 . . 3 (((iEdg‘𝐻):(Edg‘𝐻)⟶dom (iEdg‘𝐻) ∧ 𝐿 ⊆ (Edg‘𝐻)) → ((iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥})
125, 10, 11sylancl 586 . 2 (𝐻 ∈ USPGraph → ((iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥})
13 sseq1 3963 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑀𝑦𝑀))
1413, 6elrab2 3653 . . . . . 6 (𝑦𝐿 ↔ (𝑦𝐽𝑦𝑀))
157eleq2i 2820 . . . . . . . . . . . . . . . . 17 (𝑦𝐽𝑦 ∈ (Edg‘𝐻))
1615biimpi 216 . . . . . . . . . . . . . . . 16 (𝑦𝐽𝑦 ∈ (Edg‘𝐻))
17 f1ocnvfv2 7218 . . . . . . . . . . . . . . . 16 (((iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) ∧ 𝑦 ∈ (Edg‘𝐻)) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = 𝑦)
182, 16, 17syl2an 596 . . . . . . . . . . . . . . 15 ((𝐻 ∈ USPGraph ∧ 𝑦𝐽) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = 𝑦)
1918eqcomd 2735 . . . . . . . . . . . . . 14 ((𝐻 ∈ USPGraph ∧ 𝑦𝐽) → 𝑦 = ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)))
2019sseq1d 3969 . . . . . . . . . . . . 13 ((𝐻 ∈ USPGraph ∧ 𝑦𝐽) → (𝑦𝑀 ↔ ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀))
2120biimpd 229 . . . . . . . . . . . 12 ((𝐻 ∈ USPGraph ∧ 𝑦𝐽) → (𝑦𝑀 → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀))
2221ex 412 . . . . . . . . . . 11 (𝐻 ∈ USPGraph → (𝑦𝐽 → (𝑦𝑀 → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀)))
2322adantr 480 . . . . . . . . . 10 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (𝑦𝐽 → (𝑦𝑀 → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀)))
2423imp32 418 . . . . . . . . 9 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ (𝑦𝐽𝑦𝑀)) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀)
25243adant3 1132 . . . . . . . 8 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ (𝑦𝐽𝑦𝑀) ∧ ((iEdg‘𝐻)‘𝑦) = 𝑥) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀)
26 fveq2 6826 . . . . . . . . . 10 (((iEdg‘𝐻)‘𝑦) = 𝑥 → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = ((iEdg‘𝐻)‘𝑥))
2726sseq1d 3969 . . . . . . . . 9 (((iEdg‘𝐻)‘𝑦) = 𝑥 → (((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀 ↔ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
28273ad2ant3 1135 . . . . . . . 8 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ (𝑦𝐽𝑦𝑀) ∧ ((iEdg‘𝐻)‘𝑦) = 𝑥) → (((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀 ↔ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
2925, 28mpbid 232 . . . . . . 7 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ (𝑦𝐽𝑦𝑀) ∧ ((iEdg‘𝐻)‘𝑦) = 𝑥) → ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀)
30293exp 1119 . . . . . 6 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → ((𝑦𝐽𝑦𝑀) → (((iEdg‘𝐻)‘𝑦) = 𝑥 → ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀)))
3114, 30biimtrid 242 . . . . 5 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (𝑦𝐿 → (((iEdg‘𝐻)‘𝑦) = 𝑥 → ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀)))
3231rexlimdv 3128 . . . 4 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥 → ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
33 fveqeq2 6835 . . . . . 6 (𝑦 = ((iEdg‘𝐻)‘𝑥) → (((iEdg‘𝐻)‘𝑦) = 𝑥 ↔ ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑥)) = 𝑥))
34 f1of 6768 . . . . . . . . . 10 ((iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶(Edg‘𝐻))
35 eqid 2729 . . . . . . . . . . . 12 dom (iEdg‘𝐻) = dom (iEdg‘𝐻)
367eqcomi 2738 . . . . . . . . . . . 12 (Edg‘𝐻) = 𝐽
3735, 36feq23i 6650 . . . . . . . . . . 11 ((iEdg‘𝐻):dom (iEdg‘𝐻)⟶(Edg‘𝐻) ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)⟶𝐽)
3837biimpi 216 . . . . . . . . . 10 ((iEdg‘𝐻):dom (iEdg‘𝐻)⟶(Edg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶𝐽)
392, 34, 383syl 18 . . . . . . . . 9 (𝐻 ∈ USPGraph → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶𝐽)
4039ffvelcdmda 7022 . . . . . . . 8 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘𝑥) ∈ 𝐽)
4140anim1i 615 . . . . . . 7 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀) → (((iEdg‘𝐻)‘𝑥) ∈ 𝐽 ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
42 sseq1 3963 . . . . . . . 8 (𝑦 = ((iEdg‘𝐻)‘𝑥) → (𝑦𝑀 ↔ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
4313, 42, 6elrab2w 3654 . . . . . . 7 (((iEdg‘𝐻)‘𝑥) ∈ 𝐿 ↔ (((iEdg‘𝐻)‘𝑥) ∈ 𝐽 ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
4441, 43sylibr 234 . . . . . 6 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀) → ((iEdg‘𝐻)‘𝑥) ∈ 𝐿)
45 f1ocnvfv1 7217 . . . . . . . 8 (((iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑥)) = 𝑥)
462, 45sylan 580 . . . . . . 7 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑥)) = 𝑥)
4746adantr 480 . . . . . 6 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑥)) = 𝑥)
4833, 44, 47rspcedvdw 3582 . . . . 5 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀) → ∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥)
4948ex 412 . . . 4 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘𝑥) ⊆ 𝑀 → ∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥))
5032, 49impbid 212 . . 3 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥 ↔ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
5150rabbidva 3403 . 2 (𝐻 ∈ USPGraph → {𝑥 ∈ dom (iEdg‘𝐻) ∣ ∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥} = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})
5212, 51eqtrd 2764 1 (𝐻 ∈ USPGraph → ((iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  {crab 3396  wss 3905  ccnv 5622  dom cdm 5623  cima 5626  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  iEdgciedg 28961  Edgcedg 29011  USPGraphcuspgr 29112   ClNeighbVtx cclnbgr 47822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-edg 29012  df-uspgr 29114
This theorem is referenced by:  uspgrlim  47996
  Copyright terms: Public domain W3C validator