Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrlimlem2 Structured version   Visualization version   GIF version

Theorem uspgrlimlem2 47929
Description: Lemma 2 for uspgrlim 47932. (Contributed by AV, 16-Aug-2025.)
Hypotheses
Ref Expression
uspgrlimlem1.m 𝑀 = (𝐻 ClNeighbVtx 𝑋)
uspgrlimlem1.j 𝐽 = (Edg‘𝐻)
uspgrlimlem1.l 𝐿 = {𝑥𝐽𝑥𝑀}
Assertion
Ref Expression
uspgrlimlem2 (𝐻 ∈ USPGraph → ((iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})
Distinct variable groups:   𝑥,𝐻   𝑥,𝐽   𝑥,𝑀   𝑥,𝐿
Allowed substitution hint:   𝑋(𝑥)

Proof of Theorem uspgrlimlem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . . 5 (iEdg‘𝐻) = (iEdg‘𝐻)
21uspgrf1oedg 29119 . . . 4 (𝐻 ∈ USPGraph → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻))
3 f1ocnv 6840 . . . 4 ((iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) → (iEdg‘𝐻):(Edg‘𝐻)–1-1-onto→dom (iEdg‘𝐻))
4 f1of 6828 . . . 4 ((iEdg‘𝐻):(Edg‘𝐻)–1-1-onto→dom (iEdg‘𝐻) → (iEdg‘𝐻):(Edg‘𝐻)⟶dom (iEdg‘𝐻))
52, 3, 43syl 18 . . 3 (𝐻 ∈ USPGraph → (iEdg‘𝐻):(Edg‘𝐻)⟶dom (iEdg‘𝐻))
6 uspgrlimlem1.l . . . . 5 𝐿 = {𝑥𝐽𝑥𝑀}
7 uspgrlimlem1.j . . . . . 6 𝐽 = (Edg‘𝐻)
87rabeqi 3433 . . . . 5 {𝑥𝐽𝑥𝑀} = {𝑥 ∈ (Edg‘𝐻) ∣ 𝑥𝑀}
96, 8eqtri 2757 . . . 4 𝐿 = {𝑥 ∈ (Edg‘𝐻) ∣ 𝑥𝑀}
109ssrab3 4062 . . 3 𝐿 ⊆ (Edg‘𝐻)
11 fimarab 6963 . . 3 (((iEdg‘𝐻):(Edg‘𝐻)⟶dom (iEdg‘𝐻) ∧ 𝐿 ⊆ (Edg‘𝐻)) → ((iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥})
125, 10, 11sylancl 586 . 2 (𝐻 ∈ USPGraph → ((iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥})
13 sseq1 3989 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝑀𝑦𝑀))
1413, 6elrab2 3678 . . . . . 6 (𝑦𝐿 ↔ (𝑦𝐽𝑦𝑀))
157eleq2i 2825 . . . . . . . . . . . . . . . . 17 (𝑦𝐽𝑦 ∈ (Edg‘𝐻))
1615biimpi 216 . . . . . . . . . . . . . . . 16 (𝑦𝐽𝑦 ∈ (Edg‘𝐻))
17 f1ocnvfv2 7279 . . . . . . . . . . . . . . . 16 (((iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) ∧ 𝑦 ∈ (Edg‘𝐻)) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = 𝑦)
182, 16, 17syl2an 596 . . . . . . . . . . . . . . 15 ((𝐻 ∈ USPGraph ∧ 𝑦𝐽) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = 𝑦)
1918eqcomd 2740 . . . . . . . . . . . . . 14 ((𝐻 ∈ USPGraph ∧ 𝑦𝐽) → 𝑦 = ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)))
2019sseq1d 3995 . . . . . . . . . . . . 13 ((𝐻 ∈ USPGraph ∧ 𝑦𝐽) → (𝑦𝑀 ↔ ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀))
2120biimpd 229 . . . . . . . . . . . 12 ((𝐻 ∈ USPGraph ∧ 𝑦𝐽) → (𝑦𝑀 → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀))
2221ex 412 . . . . . . . . . . 11 (𝐻 ∈ USPGraph → (𝑦𝐽 → (𝑦𝑀 → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀)))
2322adantr 480 . . . . . . . . . 10 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (𝑦𝐽 → (𝑦𝑀 → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀)))
2423imp32 418 . . . . . . . . 9 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ (𝑦𝐽𝑦𝑀)) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀)
25243adant3 1132 . . . . . . . 8 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ (𝑦𝐽𝑦𝑀) ∧ ((iEdg‘𝐻)‘𝑦) = 𝑥) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀)
26 fveq2 6886 . . . . . . . . . 10 (((iEdg‘𝐻)‘𝑦) = 𝑥 → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) = ((iEdg‘𝐻)‘𝑥))
2726sseq1d 3995 . . . . . . . . 9 (((iEdg‘𝐻)‘𝑦) = 𝑥 → (((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀 ↔ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
28273ad2ant3 1135 . . . . . . . 8 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ (𝑦𝐽𝑦𝑀) ∧ ((iEdg‘𝐻)‘𝑦) = 𝑥) → (((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑦)) ⊆ 𝑀 ↔ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
2925, 28mpbid 232 . . . . . . 7 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ (𝑦𝐽𝑦𝑀) ∧ ((iEdg‘𝐻)‘𝑦) = 𝑥) → ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀)
30293exp 1119 . . . . . 6 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → ((𝑦𝐽𝑦𝑀) → (((iEdg‘𝐻)‘𝑦) = 𝑥 → ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀)))
3114, 30biimtrid 242 . . . . 5 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (𝑦𝐿 → (((iEdg‘𝐻)‘𝑦) = 𝑥 → ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀)))
3231rexlimdv 3140 . . . 4 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥 → ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
33 fveqeq2 6895 . . . . . 6 (𝑦 = ((iEdg‘𝐻)‘𝑥) → (((iEdg‘𝐻)‘𝑦) = 𝑥 ↔ ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑥)) = 𝑥))
34 f1of 6828 . . . . . . . . . 10 ((iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶(Edg‘𝐻))
35 eqid 2734 . . . . . . . . . . . 12 dom (iEdg‘𝐻) = dom (iEdg‘𝐻)
367eqcomi 2743 . . . . . . . . . . . 12 (Edg‘𝐻) = 𝐽
3735, 36feq23i 6710 . . . . . . . . . . 11 ((iEdg‘𝐻):dom (iEdg‘𝐻)⟶(Edg‘𝐻) ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)⟶𝐽)
3837biimpi 216 . . . . . . . . . 10 ((iEdg‘𝐻):dom (iEdg‘𝐻)⟶(Edg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶𝐽)
392, 34, 383syl 18 . . . . . . . . 9 (𝐻 ∈ USPGraph → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶𝐽)
4039ffvelcdmda 7084 . . . . . . . 8 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘𝑥) ∈ 𝐽)
4140anim1i 615 . . . . . . 7 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀) → (((iEdg‘𝐻)‘𝑥) ∈ 𝐽 ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
42 sseq1 3989 . . . . . . . 8 (𝑦 = ((iEdg‘𝐻)‘𝑥) → (𝑦𝑀 ↔ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
4313, 42, 6elrab2w 3679 . . . . . . 7 (((iEdg‘𝐻)‘𝑥) ∈ 𝐿 ↔ (((iEdg‘𝐻)‘𝑥) ∈ 𝐽 ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
4441, 43sylibr 234 . . . . . 6 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀) → ((iEdg‘𝐻)‘𝑥) ∈ 𝐿)
45 f1ocnvfv1 7278 . . . . . . . 8 (((iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑥)) = 𝑥)
462, 45sylan 580 . . . . . . 7 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑥)) = 𝑥)
4746adantr 480 . . . . . 6 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀) → ((iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑥)) = 𝑥)
4833, 44, 47rspcedvdw 3608 . . . . 5 (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀) → ∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥)
4948ex 412 . . . 4 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘𝑥) ⊆ 𝑀 → ∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥))
5032, 49impbid 212 . . 3 ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥 ↔ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))
5150rabbidva 3426 . 2 (𝐻 ∈ USPGraph → {𝑥 ∈ dom (iEdg‘𝐻) ∣ ∃𝑦𝐿 ((iEdg‘𝐻)‘𝑦) = 𝑥} = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})
5212, 51eqtrd 2769 1 (𝐻 ∈ USPGraph → ((iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wrex 3059  {crab 3419  wss 3931  ccnv 5664  dom cdm 5665  cima 5668  wf 6537  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7413  iEdgciedg 28943  Edgcedg 28993  USPGraphcuspgr 29094   ClNeighbVtx cclnbgr 47778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-edg 28994  df-uspgr 29096
This theorem is referenced by:  uspgrlim  47932
  Copyright terms: Public domain W3C validator