Step | Hyp | Ref
| Expression |
1 | | eqid 2740 |
. . . . 5
⊢
(iEdg‘𝐻) =
(iEdg‘𝐻) |
2 | 1 | uspgrf1oedg 29200 |
. . . 4
⊢ (𝐻 ∈ USPGraph →
(iEdg‘𝐻):dom
(iEdg‘𝐻)–1-1-onto→(Edg‘𝐻)) |
3 | | f1ocnv 6869 |
. . . 4
⊢
((iEdg‘𝐻):dom
(iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) → ◡(iEdg‘𝐻):(Edg‘𝐻)–1-1-onto→dom
(iEdg‘𝐻)) |
4 | | f1of 6857 |
. . . 4
⊢ (◡(iEdg‘𝐻):(Edg‘𝐻)–1-1-onto→dom
(iEdg‘𝐻) → ◡(iEdg‘𝐻):(Edg‘𝐻)⟶dom (iEdg‘𝐻)) |
5 | 2, 3, 4 | 3syl 18 |
. . 3
⊢ (𝐻 ∈ USPGraph → ◡(iEdg‘𝐻):(Edg‘𝐻)⟶dom (iEdg‘𝐻)) |
6 | | uspgrlimlem1.l |
. . . . 5
⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} |
7 | | uspgrlimlem1.j |
. . . . . 6
⊢ 𝐽 = (Edg‘𝐻) |
8 | 7 | rabeqi 3457 |
. . . . 5
⊢ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} = {𝑥 ∈ (Edg‘𝐻) ∣ 𝑥 ⊆ 𝑀} |
9 | 6, 8 | eqtri 2768 |
. . . 4
⊢ 𝐿 = {𝑥 ∈ (Edg‘𝐻) ∣ 𝑥 ⊆ 𝑀} |
10 | 9 | ssrab3 4105 |
. . 3
⊢ 𝐿 ⊆ (Edg‘𝐻) |
11 | | fimarab 6991 |
. . 3
⊢ ((◡(iEdg‘𝐻):(Edg‘𝐻)⟶dom (iEdg‘𝐻) ∧ 𝐿 ⊆ (Edg‘𝐻)) → (◡(iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ∃𝑦 ∈ 𝐿 (◡(iEdg‘𝐻)‘𝑦) = 𝑥}) |
12 | 5, 10, 11 | sylancl 585 |
. 2
⊢ (𝐻 ∈ USPGraph → (◡(iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ∃𝑦 ∈ 𝐿 (◡(iEdg‘𝐻)‘𝑦) = 𝑥}) |
13 | | sseq1 4034 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝑀 ↔ 𝑦 ⊆ 𝑀)) |
14 | 13, 6 | elrab2 3711 |
. . . . . 6
⊢ (𝑦 ∈ 𝐿 ↔ (𝑦 ∈ 𝐽 ∧ 𝑦 ⊆ 𝑀)) |
15 | 7 | eleq2i 2836 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝐽 ↔ 𝑦 ∈ (Edg‘𝐻)) |
16 | 15 | biimpi 216 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝐽 → 𝑦 ∈ (Edg‘𝐻)) |
17 | | f1ocnvfv2 7308 |
. . . . . . . . . . . . . . . 16
⊢
(((iEdg‘𝐻):dom
(iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) ∧ 𝑦 ∈ (Edg‘𝐻)) → ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) = 𝑦) |
18 | 2, 16, 17 | syl2an 595 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻 ∈ USPGraph ∧ 𝑦 ∈ 𝐽) → ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) = 𝑦) |
19 | 18 | eqcomd 2746 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 ∈ USPGraph ∧ 𝑦 ∈ 𝐽) → 𝑦 = ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦))) |
20 | 19 | sseq1d 4040 |
. . . . . . . . . . . . 13
⊢ ((𝐻 ∈ USPGraph ∧ 𝑦 ∈ 𝐽) → (𝑦 ⊆ 𝑀 ↔ ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) ⊆ 𝑀)) |
21 | 20 | biimpd 229 |
. . . . . . . . . . . 12
⊢ ((𝐻 ∈ USPGraph ∧ 𝑦 ∈ 𝐽) → (𝑦 ⊆ 𝑀 → ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) ⊆ 𝑀)) |
22 | 21 | ex 412 |
. . . . . . . . . . 11
⊢ (𝐻 ∈ USPGraph → (𝑦 ∈ 𝐽 → (𝑦 ⊆ 𝑀 → ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) ⊆ 𝑀))) |
23 | 22 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (𝑦 ∈ 𝐽 → (𝑦 ⊆ 𝑀 → ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) ⊆ 𝑀))) |
24 | 23 | imp32 418 |
. . . . . . . . 9
⊢ (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑦 ⊆ 𝑀)) → ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) ⊆ 𝑀) |
25 | 24 | 3adant3 1132 |
. . . . . . . 8
⊢ (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑦 ⊆ 𝑀) ∧ (◡(iEdg‘𝐻)‘𝑦) = 𝑥) → ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) ⊆ 𝑀) |
26 | | fveq2 6915 |
. . . . . . . . . 10
⊢ ((◡(iEdg‘𝐻)‘𝑦) = 𝑥 → ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) = ((iEdg‘𝐻)‘𝑥)) |
27 | 26 | sseq1d 4040 |
. . . . . . . . 9
⊢ ((◡(iEdg‘𝐻)‘𝑦) = 𝑥 → (((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) ⊆ 𝑀 ↔ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀)) |
28 | 27 | 3ad2ant3 1135 |
. . . . . . . 8
⊢ (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑦 ⊆ 𝑀) ∧ (◡(iEdg‘𝐻)‘𝑦) = 𝑥) → (((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘𝑦)) ⊆ 𝑀 ↔ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀)) |
29 | 25, 28 | mpbid 232 |
. . . . . . 7
⊢ (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ (𝑦 ∈ 𝐽 ∧ 𝑦 ⊆ 𝑀) ∧ (◡(iEdg‘𝐻)‘𝑦) = 𝑥) → ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀) |
30 | 29 | 3exp 1119 |
. . . . . 6
⊢ ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → ((𝑦 ∈ 𝐽 ∧ 𝑦 ⊆ 𝑀) → ((◡(iEdg‘𝐻)‘𝑦) = 𝑥 → ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))) |
31 | 14, 30 | biimtrid 242 |
. . . . 5
⊢ ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (𝑦 ∈ 𝐿 → ((◡(iEdg‘𝐻)‘𝑦) = 𝑥 → ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀))) |
32 | 31 | rexlimdv 3159 |
. . . 4
⊢ ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (∃𝑦 ∈ 𝐿 (◡(iEdg‘𝐻)‘𝑦) = 𝑥 → ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀)) |
33 | | fveqeq2 6924 |
. . . . . 6
⊢ (𝑦 = ((iEdg‘𝐻)‘𝑥) → ((◡(iEdg‘𝐻)‘𝑦) = 𝑥 ↔ (◡(iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑥)) = 𝑥)) |
34 | | f1of 6857 |
. . . . . . . . . 10
⊢
((iEdg‘𝐻):dom
(iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶(Edg‘𝐻)) |
35 | | eqid 2740 |
. . . . . . . . . . . 12
⊢ dom
(iEdg‘𝐻) = dom
(iEdg‘𝐻) |
36 | 7 | eqcomi 2749 |
. . . . . . . . . . . 12
⊢
(Edg‘𝐻) =
𝐽 |
37 | 35, 36 | feq23i 6736 |
. . . . . . . . . . 11
⊢
((iEdg‘𝐻):dom
(iEdg‘𝐻)⟶(Edg‘𝐻) ↔ (iEdg‘𝐻):dom (iEdg‘𝐻)⟶𝐽) |
38 | 37 | biimpi 216 |
. . . . . . . . . 10
⊢
((iEdg‘𝐻):dom
(iEdg‘𝐻)⟶(Edg‘𝐻) → (iEdg‘𝐻):dom (iEdg‘𝐻)⟶𝐽) |
39 | 2, 34, 38 | 3syl 18 |
. . . . . . . . 9
⊢ (𝐻 ∈ USPGraph →
(iEdg‘𝐻):dom
(iEdg‘𝐻)⟶𝐽) |
40 | 39 | ffvelcdmda 7113 |
. . . . . . . 8
⊢ ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → ((iEdg‘𝐻)‘𝑥) ∈ 𝐽) |
41 | 40 | anim1i 614 |
. . . . . . 7
⊢ (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀) → (((iEdg‘𝐻)‘𝑥) ∈ 𝐽 ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀)) |
42 | | sseq1 4034 |
. . . . . . . 8
⊢ (𝑦 = ((iEdg‘𝐻)‘𝑥) → (𝑦 ⊆ 𝑀 ↔ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀)) |
43 | 13, 42, 6 | elrab2w 3712 |
. . . . . . 7
⊢
(((iEdg‘𝐻)‘𝑥) ∈ 𝐿 ↔ (((iEdg‘𝐻)‘𝑥) ∈ 𝐽 ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀)) |
44 | 41, 43 | sylibr 234 |
. . . . . 6
⊢ (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀) → ((iEdg‘𝐻)‘𝑥) ∈ 𝐿) |
45 | | f1ocnvfv1 7307 |
. . . . . . . 8
⊢
(((iEdg‘𝐻):dom
(iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (◡(iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑥)) = 𝑥) |
46 | 2, 45 | sylan 579 |
. . . . . . 7
⊢ ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (◡(iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑥)) = 𝑥) |
47 | 46 | adantr 480 |
. . . . . 6
⊢ (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀) → (◡(iEdg‘𝐻)‘((iEdg‘𝐻)‘𝑥)) = 𝑥) |
48 | 33, 44, 47 | rspcedvdw 3638 |
. . . . 5
⊢ (((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) ∧ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀) → ∃𝑦 ∈ 𝐿 (◡(iEdg‘𝐻)‘𝑦) = 𝑥) |
49 | 48 | ex 412 |
. . . 4
⊢ ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (((iEdg‘𝐻)‘𝑥) ⊆ 𝑀 → ∃𝑦 ∈ 𝐿 (◡(iEdg‘𝐻)‘𝑦) = 𝑥)) |
50 | 32, 49 | impbid 212 |
. . 3
⊢ ((𝐻 ∈ USPGraph ∧ 𝑥 ∈ dom (iEdg‘𝐻)) → (∃𝑦 ∈ 𝐿 (◡(iEdg‘𝐻)‘𝑦) = 𝑥 ↔ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀)) |
51 | 50 | rabbidva 3450 |
. 2
⊢ (𝐻 ∈ USPGraph → {𝑥 ∈ dom (iEdg‘𝐻) ∣ ∃𝑦 ∈ 𝐿 (◡(iEdg‘𝐻)‘𝑦) = 𝑥} = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}) |
52 | 12, 51 | eqtrd 2780 |
1
⊢ (𝐻 ∈ USPGraph → (◡(iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}) |