Proof of Theorem uspgrlimlem3
Step | Hyp | Ref
| Expression |
1 | | sseq1 4034 |
. . 3
⊢ (𝑥 = 𝑒 → (𝑥 ⊆ 𝑁 ↔ 𝑒 ⊆ 𝑁)) |
2 | | uspgrlim.k |
. . 3
⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} |
3 | 1, 2 | elrab2 3711 |
. 2
⊢ (𝑒 ∈ 𝐾 ↔ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) |
4 | | eqid 2740 |
. . . . . . . 8
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
5 | 4 | uspgrf1oedg 29200 |
. . . . . . 7
⊢ (𝐺 ∈ USPGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→(Edg‘𝐺)) |
6 | | f1ocnv 6869 |
. . . . . . 7
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) → ◡(iEdg‘𝐺):(Edg‘𝐺)–1-1-onto→dom
(iEdg‘𝐺)) |
7 | | f1of 6857 |
. . . . . . 7
⊢ (◡(iEdg‘𝐺):(Edg‘𝐺)–1-1-onto→dom
(iEdg‘𝐺) → ◡(iEdg‘𝐺):(Edg‘𝐺)⟶dom (iEdg‘𝐺)) |
8 | 5, 6, 7 | 3syl 18 |
. . . . . 6
⊢ (𝐺 ∈ USPGraph → ◡(iEdg‘𝐺):(Edg‘𝐺)⟶dom (iEdg‘𝐺)) |
9 | 8 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅 ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))) → ◡(iEdg‘𝐺):(Edg‘𝐺)⟶dom (iEdg‘𝐺)) |
10 | | uspgrlim.i |
. . . . . . . 8
⊢ 𝐼 = (Edg‘𝐺) |
11 | 10 | eleq2i 2836 |
. . . . . . 7
⊢ (𝑒 ∈ 𝐼 ↔ 𝑒 ∈ (Edg‘𝐺)) |
12 | 11 | biimpi 216 |
. . . . . 6
⊢ (𝑒 ∈ 𝐼 → 𝑒 ∈ (Edg‘𝐺)) |
13 | 12 | adantr 480 |
. . . . 5
⊢ ((𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁) → 𝑒 ∈ (Edg‘𝐺)) |
14 | | fvco3 7016 |
. . . . 5
⊢ ((◡(iEdg‘𝐺):(Edg‘𝐺)⟶dom (iEdg‘𝐺) ∧ 𝑒 ∈ (Edg‘𝐺)) → ((((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺))‘𝑒) = (((iEdg‘𝐻) ∘ ℎ)‘(◡(iEdg‘𝐺)‘𝑒))) |
15 | 9, 13, 14 | syl2an 595 |
. . . 4
⊢ (((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅 ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))) ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → ((((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺))‘𝑒) = (((iEdg‘𝐻) ∘ ℎ)‘(◡(iEdg‘𝐺)‘𝑒))) |
16 | | f1ocnvdm 7316 |
. . . . . . . . . . . . . 14
⊢
(((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) ∧ 𝑒 ∈ (Edg‘𝐺)) → (◡(iEdg‘𝐺)‘𝑒) ∈ dom (iEdg‘𝐺)) |
17 | 5, 13, 16 | syl2an 595 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ USPGraph ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → (◡(iEdg‘𝐺)‘𝑒) ∈ dom (iEdg‘𝐺)) |
18 | | f1ocnvfv2 7308 |
. . . . . . . . . . . . . . 15
⊢
(((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) ∧ 𝑒 ∈ (Edg‘𝐺)) → ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒)) = 𝑒) |
19 | 5, 13, 18 | syl2an 595 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ USPGraph ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒)) = 𝑒) |
20 | | simprr 772 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ USPGraph ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → 𝑒 ⊆ 𝑁) |
21 | 19, 20 | eqsstrd 4047 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ USPGraph ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒)) ⊆ 𝑁) |
22 | 17, 21 | jca 511 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ USPGraph ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → ((◡(iEdg‘𝐺)‘𝑒) ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒)) ⊆ 𝑁)) |
23 | 22 | adantlr 714 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅) ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → ((◡(iEdg‘𝐺)‘𝑒) ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒)) ⊆ 𝑁)) |
24 | | fveq2 6915 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (◡(iEdg‘𝐺)‘𝑒) → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒))) |
25 | 24 | sseq1d 4040 |
. . . . . . . . . . . 12
⊢ (𝑥 = (◡(iEdg‘𝐺)‘𝑒) → (((iEdg‘𝐺)‘𝑥) ⊆ 𝑁 ↔ ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒)) ⊆ 𝑁)) |
26 | 25 | elrab 3708 |
. . . . . . . . . . 11
⊢ ((◡(iEdg‘𝐺)‘𝑒) ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} ↔ ((◡(iEdg‘𝐺)‘𝑒) ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒)) ⊆ 𝑁)) |
27 | 23, 26 | sylibr 234 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅) ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → (◡(iEdg‘𝐺)‘𝑒) ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}) |
28 | | fveq2 6915 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (◡(iEdg‘𝐺)‘𝑒) → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒))) |
29 | 28 | imaeq2d 6084 |
. . . . . . . . . . . 12
⊢ (𝑖 = (◡(iEdg‘𝐺)‘𝑒) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒)))) |
30 | | 2fveq3 6920 |
. . . . . . . . . . . 12
⊢ (𝑖 = (◡(iEdg‘𝐺)‘𝑒) → ((iEdg‘𝐻)‘(ℎ‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘(◡(iEdg‘𝐺)‘𝑒)))) |
31 | 29, 30 | eqeq12d 2756 |
. . . . . . . . . . 11
⊢ (𝑖 = (◡(iEdg‘𝐺)‘𝑒) → ((𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)) ↔ (𝑓 “ ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒))) = ((iEdg‘𝐻)‘(ℎ‘(◡(iEdg‘𝐺)‘𝑒))))) |
32 | 31 | rspcv 3631 |
. . . . . . . . . 10
⊢ ((◡(iEdg‘𝐺)‘𝑒) ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} → (∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)) → (𝑓 “ ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒))) = ((iEdg‘𝐻)‘(ℎ‘(◡(iEdg‘𝐺)‘𝑒))))) |
33 | 27, 32 | syl 17 |
. . . . . . . . 9
⊢ (((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅) ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → (∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)) → (𝑓 “ ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒))) = ((iEdg‘𝐻)‘(ℎ‘(◡(iEdg‘𝐺)‘𝑒))))) |
34 | | eqcom 2747 |
. . . . . . . . . 10
⊢ ((𝑓 “ ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒))) = ((iEdg‘𝐻)‘(ℎ‘(◡(iEdg‘𝐺)‘𝑒))) ↔ ((iEdg‘𝐻)‘(ℎ‘(◡(iEdg‘𝐺)‘𝑒))) = (𝑓 “ ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒)))) |
35 | | f1of 6857 |
. . . . . . . . . . . . . . 15
⊢ (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅 → ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}⟶𝑅) |
36 | 35 | ad2antlr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅) ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}⟶𝑅) |
37 | 36, 27 | fvco3d 7017 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅) ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → (((iEdg‘𝐻) ∘ ℎ)‘(◡(iEdg‘𝐺)‘𝑒)) = ((iEdg‘𝐻)‘(ℎ‘(◡(iEdg‘𝐺)‘𝑒)))) |
38 | 37 | eqcomd 2746 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅) ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → ((iEdg‘𝐻)‘(ℎ‘(◡(iEdg‘𝐺)‘𝑒))) = (((iEdg‘𝐻) ∘ ℎ)‘(◡(iEdg‘𝐺)‘𝑒))) |
39 | 5 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺)) |
40 | 39, 13, 18 | syl2an 595 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅) ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒)) = 𝑒) |
41 | 40 | imaeq2d 6084 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅) ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → (𝑓 “ ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒))) = (𝑓 “ 𝑒)) |
42 | 38, 41 | eqeq12d 2756 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅) ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → (((iEdg‘𝐻)‘(ℎ‘(◡(iEdg‘𝐺)‘𝑒))) = (𝑓 “ ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒))) ↔ (((iEdg‘𝐻) ∘ ℎ)‘(◡(iEdg‘𝐺)‘𝑒)) = (𝑓 “ 𝑒))) |
43 | 42 | biimpd 229 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅) ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → (((iEdg‘𝐻)‘(ℎ‘(◡(iEdg‘𝐺)‘𝑒))) = (𝑓 “ ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒))) → (((iEdg‘𝐻) ∘ ℎ)‘(◡(iEdg‘𝐺)‘𝑒)) = (𝑓 “ 𝑒))) |
44 | 34, 43 | biimtrid 242 |
. . . . . . . . 9
⊢ (((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅) ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → ((𝑓 “ ((iEdg‘𝐺)‘(◡(iEdg‘𝐺)‘𝑒))) = ((iEdg‘𝐻)‘(ℎ‘(◡(iEdg‘𝐺)‘𝑒))) → (((iEdg‘𝐻) ∘ ℎ)‘(◡(iEdg‘𝐺)‘𝑒)) = (𝑓 “ 𝑒))) |
45 | 33, 44 | syld 47 |
. . . . . . . 8
⊢ (((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅) ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → (∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)) → (((iEdg‘𝐻) ∘ ℎ)‘(◡(iEdg‘𝐺)‘𝑒)) = (𝑓 “ 𝑒))) |
46 | 45 | ex 412 |
. . . . . . 7
⊢ ((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅) → ((𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁) → (∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)) → (((iEdg‘𝐻) ∘ ℎ)‘(◡(iEdg‘𝐺)‘𝑒)) = (𝑓 “ 𝑒)))) |
47 | 46 | com23 86 |
. . . . . 6
⊢ ((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅) → (∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)) → ((𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁) → (((iEdg‘𝐻) ∘ ℎ)‘(◡(iEdg‘𝐺)‘𝑒)) = (𝑓 “ 𝑒)))) |
48 | 47 | ex 412 |
. . . . 5
⊢ (𝐺 ∈ USPGraph → (ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅 → (∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖)) → ((𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁) → (((iEdg‘𝐻) ∘ ℎ)‘(◡(iEdg‘𝐺)‘𝑒)) = (𝑓 “ 𝑒))))) |
49 | 48 | 3imp1 1347 |
. . . 4
⊢ (((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅 ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))) ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → (((iEdg‘𝐻) ∘ ℎ)‘(◡(iEdg‘𝐺)‘𝑒)) = (𝑓 “ 𝑒)) |
50 | 15, 49 | eqtr2d 2781 |
. . 3
⊢ (((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅 ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))) ∧ (𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁)) → (𝑓 “ 𝑒) = ((((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺))‘𝑒)) |
51 | 50 | ex 412 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅 ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))) → ((𝑒 ∈ 𝐼 ∧ 𝑒 ⊆ 𝑁) → (𝑓 “ 𝑒) = ((((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺))‘𝑒))) |
52 | 3, 51 | biimtrid 242 |
1
⊢ ((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅 ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))) → (𝑒 ∈ 𝐾 → (𝑓 “ 𝑒) = ((((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺))‘𝑒))) |