Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrlimlem3 Structured version   Visualization version   GIF version

Theorem uspgrlimlem3 47930
Description: Lemma 3 for uspgrlim 47932. (Contributed by AV, 16-Aug-2025.)
Hypotheses
Ref Expression
uspgrlim.v 𝑉 = (Vtx‘𝐺)
uspgrlim.w 𝑊 = (Vtx‘𝐻)
uspgrlim.n 𝑁 = (𝐺 ClNeighbVtx 𝑣)
uspgrlim.m 𝑀 = (𝐻 ClNeighbVtx (𝐹𝑣))
uspgrlim.i 𝐼 = (Edg‘𝐺)
uspgrlim.j 𝐽 = (Edg‘𝐻)
uspgrlim.k 𝐾 = {𝑥𝐼𝑥𝑁}
uspgrlim.l 𝐿 = {𝑥𝐽𝑥𝑀}
Assertion
Ref Expression
uspgrlimlem3 ((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅 ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖))) → (𝑒𝐾 → (𝑓𝑒) = ((((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺))‘𝑒)))
Distinct variable groups:   𝑖,𝐺,𝑥   𝑖,𝐻,𝑥   𝑥,𝐼   𝑥,𝐽   𝑥,𝑀   𝑖,𝑁,𝑥   𝑒,𝑖,𝑥   𝑓,𝑖   ,𝑖
Allowed substitution hints:   𝑅(𝑥,𝑣,𝑒,𝑓,,𝑖)   𝐹(𝑥,𝑣,𝑒,𝑓,,𝑖)   𝐺(𝑣,𝑒,𝑓,)   𝐻(𝑣,𝑒,𝑓,)   𝐼(𝑣,𝑒,𝑓,,𝑖)   𝐽(𝑣,𝑒,𝑓,,𝑖)   𝐾(𝑥,𝑣,𝑒,𝑓,,𝑖)   𝐿(𝑥,𝑣,𝑒,𝑓,,𝑖)   𝑀(𝑣,𝑒,𝑓,,𝑖)   𝑁(𝑣,𝑒,𝑓,)   𝑉(𝑥,𝑣,𝑒,𝑓,,𝑖)   𝑊(𝑥,𝑣,𝑒,𝑓,,𝑖)

Proof of Theorem uspgrlimlem3
StepHypRef Expression
1 sseq1 3989 . . 3 (𝑥 = 𝑒 → (𝑥𝑁𝑒𝑁))
2 uspgrlim.k . . 3 𝐾 = {𝑥𝐼𝑥𝑁}
31, 2elrab2 3678 . 2 (𝑒𝐾 ↔ (𝑒𝐼𝑒𝑁))
4 eqid 2734 . . . . . . . 8 (iEdg‘𝐺) = (iEdg‘𝐺)
54uspgrf1oedg 29119 . . . . . . 7 (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺))
6 f1ocnv 6840 . . . . . . 7 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) → (iEdg‘𝐺):(Edg‘𝐺)–1-1-onto→dom (iEdg‘𝐺))
7 f1of 6828 . . . . . . 7 ((iEdg‘𝐺):(Edg‘𝐺)–1-1-onto→dom (iEdg‘𝐺) → (iEdg‘𝐺):(Edg‘𝐺)⟶dom (iEdg‘𝐺))
85, 6, 73syl 18 . . . . . 6 (𝐺 ∈ USPGraph → (iEdg‘𝐺):(Edg‘𝐺)⟶dom (iEdg‘𝐺))
983ad2ant1 1133 . . . . 5 ((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅 ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖))) → (iEdg‘𝐺):(Edg‘𝐺)⟶dom (iEdg‘𝐺))
10 uspgrlim.i . . . . . . . 8 𝐼 = (Edg‘𝐺)
1110eleq2i 2825 . . . . . . 7 (𝑒𝐼𝑒 ∈ (Edg‘𝐺))
1211biimpi 216 . . . . . 6 (𝑒𝐼𝑒 ∈ (Edg‘𝐺))
1312adantr 480 . . . . 5 ((𝑒𝐼𝑒𝑁) → 𝑒 ∈ (Edg‘𝐺))
14 fvco3 6988 . . . . 5 (((iEdg‘𝐺):(Edg‘𝐺)⟶dom (iEdg‘𝐺) ∧ 𝑒 ∈ (Edg‘𝐺)) → ((((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺))‘𝑒) = (((iEdg‘𝐻) ∘ )‘((iEdg‘𝐺)‘𝑒)))
159, 13, 14syl2an 596 . . . 4 (((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅 ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖))) ∧ (𝑒𝐼𝑒𝑁)) → ((((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺))‘𝑒) = (((iEdg‘𝐻) ∘ )‘((iEdg‘𝐺)‘𝑒)))
16 f1ocnvdm 7287 . . . . . . . . . . . . . 14 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) ∧ 𝑒 ∈ (Edg‘𝐺)) → ((iEdg‘𝐺)‘𝑒) ∈ dom (iEdg‘𝐺))
175, 13, 16syl2an 596 . . . . . . . . . . . . 13 ((𝐺 ∈ USPGraph ∧ (𝑒𝐼𝑒𝑁)) → ((iEdg‘𝐺)‘𝑒) ∈ dom (iEdg‘𝐺))
18 f1ocnvfv2 7279 . . . . . . . . . . . . . . 15 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) ∧ 𝑒 ∈ (Edg‘𝐺)) → ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒)) = 𝑒)
195, 13, 18syl2an 596 . . . . . . . . . . . . . 14 ((𝐺 ∈ USPGraph ∧ (𝑒𝐼𝑒𝑁)) → ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒)) = 𝑒)
20 simprr 772 . . . . . . . . . . . . . 14 ((𝐺 ∈ USPGraph ∧ (𝑒𝐼𝑒𝑁)) → 𝑒𝑁)
2119, 20eqsstrd 3998 . . . . . . . . . . . . 13 ((𝐺 ∈ USPGraph ∧ (𝑒𝐼𝑒𝑁)) → ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒)) ⊆ 𝑁)
2217, 21jca 511 . . . . . . . . . . . 12 ((𝐺 ∈ USPGraph ∧ (𝑒𝐼𝑒𝑁)) → (((iEdg‘𝐺)‘𝑒) ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒)) ⊆ 𝑁))
2322adantlr 715 . . . . . . . . . . 11 (((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅) ∧ (𝑒𝐼𝑒𝑁)) → (((iEdg‘𝐺)‘𝑒) ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒)) ⊆ 𝑁))
24 fveq2 6886 . . . . . . . . . . . . 13 (𝑥 = ((iEdg‘𝐺)‘𝑒) → ((iEdg‘𝐺)‘𝑥) = ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒)))
2524sseq1d 3995 . . . . . . . . . . . 12 (𝑥 = ((iEdg‘𝐺)‘𝑒) → (((iEdg‘𝐺)‘𝑥) ⊆ 𝑁 ↔ ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒)) ⊆ 𝑁))
2625elrab 3675 . . . . . . . . . . 11 (((iEdg‘𝐺)‘𝑒) ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} ↔ (((iEdg‘𝐺)‘𝑒) ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒)) ⊆ 𝑁))
2723, 26sylibr 234 . . . . . . . . . 10 (((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅) ∧ (𝑒𝐼𝑒𝑁)) → ((iEdg‘𝐺)‘𝑒) ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁})
28 fveq2 6886 . . . . . . . . . . . . 13 (𝑖 = ((iEdg‘𝐺)‘𝑒) → ((iEdg‘𝐺)‘𝑖) = ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒)))
2928imaeq2d 6058 . . . . . . . . . . . 12 (𝑖 = ((iEdg‘𝐺)‘𝑒) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (𝑓 “ ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒))))
30 2fveq3 6891 . . . . . . . . . . . 12 (𝑖 = ((iEdg‘𝐺)‘𝑒) → ((iEdg‘𝐻)‘(𝑖)) = ((iEdg‘𝐻)‘(‘((iEdg‘𝐺)‘𝑒))))
3129, 30eqeq12d 2750 . . . . . . . . . . 11 (𝑖 = ((iEdg‘𝐺)‘𝑒) → ((𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)) ↔ (𝑓 “ ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒))) = ((iEdg‘𝐻)‘(‘((iEdg‘𝐺)‘𝑒)))))
3231rspcv 3601 . . . . . . . . . 10 (((iEdg‘𝐺)‘𝑒) ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} → (∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)) → (𝑓 “ ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒))) = ((iEdg‘𝐻)‘(‘((iEdg‘𝐺)‘𝑒)))))
3327, 32syl 17 . . . . . . . . 9 (((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅) ∧ (𝑒𝐼𝑒𝑁)) → (∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)) → (𝑓 “ ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒))) = ((iEdg‘𝐻)‘(‘((iEdg‘𝐺)‘𝑒)))))
34 eqcom 2741 . . . . . . . . . 10 ((𝑓 “ ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒))) = ((iEdg‘𝐻)‘(‘((iEdg‘𝐺)‘𝑒))) ↔ ((iEdg‘𝐻)‘(‘((iEdg‘𝐺)‘𝑒))) = (𝑓 “ ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒))))
35 f1of 6828 . . . . . . . . . . . . . . 15 (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}⟶𝑅)
3635ad2antlr 727 . . . . . . . . . . . . . 14 (((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅) ∧ (𝑒𝐼𝑒𝑁)) → :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}⟶𝑅)
3736, 27fvco3d 6989 . . . . . . . . . . . . 13 (((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅) ∧ (𝑒𝐼𝑒𝑁)) → (((iEdg‘𝐻) ∘ )‘((iEdg‘𝐺)‘𝑒)) = ((iEdg‘𝐻)‘(‘((iEdg‘𝐺)‘𝑒))))
3837eqcomd 2740 . . . . . . . . . . . 12 (((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅) ∧ (𝑒𝐼𝑒𝑁)) → ((iEdg‘𝐻)‘(‘((iEdg‘𝐺)‘𝑒))) = (((iEdg‘𝐻) ∘ )‘((iEdg‘𝐺)‘𝑒)))
395adantr 480 . . . . . . . . . . . . . 14 ((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1-onto→(Edg‘𝐺))
4039, 13, 18syl2an 596 . . . . . . . . . . . . 13 (((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅) ∧ (𝑒𝐼𝑒𝑁)) → ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒)) = 𝑒)
4140imaeq2d 6058 . . . . . . . . . . . 12 (((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅) ∧ (𝑒𝐼𝑒𝑁)) → (𝑓 “ ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒))) = (𝑓𝑒))
4238, 41eqeq12d 2750 . . . . . . . . . . 11 (((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅) ∧ (𝑒𝐼𝑒𝑁)) → (((iEdg‘𝐻)‘(‘((iEdg‘𝐺)‘𝑒))) = (𝑓 “ ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒))) ↔ (((iEdg‘𝐻) ∘ )‘((iEdg‘𝐺)‘𝑒)) = (𝑓𝑒)))
4342biimpd 229 . . . . . . . . . 10 (((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅) ∧ (𝑒𝐼𝑒𝑁)) → (((iEdg‘𝐻)‘(‘((iEdg‘𝐺)‘𝑒))) = (𝑓 “ ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒))) → (((iEdg‘𝐻) ∘ )‘((iEdg‘𝐺)‘𝑒)) = (𝑓𝑒)))
4434, 43biimtrid 242 . . . . . . . . 9 (((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅) ∧ (𝑒𝐼𝑒𝑁)) → ((𝑓 “ ((iEdg‘𝐺)‘((iEdg‘𝐺)‘𝑒))) = ((iEdg‘𝐻)‘(‘((iEdg‘𝐺)‘𝑒))) → (((iEdg‘𝐻) ∘ )‘((iEdg‘𝐺)‘𝑒)) = (𝑓𝑒)))
4533, 44syld 47 . . . . . . . 8 (((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅) ∧ (𝑒𝐼𝑒𝑁)) → (∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)) → (((iEdg‘𝐻) ∘ )‘((iEdg‘𝐺)‘𝑒)) = (𝑓𝑒)))
4645ex 412 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅) → ((𝑒𝐼𝑒𝑁) → (∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)) → (((iEdg‘𝐻) ∘ )‘((iEdg‘𝐺)‘𝑒)) = (𝑓𝑒))))
4746com23 86 . . . . . 6 ((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅) → (∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)) → ((𝑒𝐼𝑒𝑁) → (((iEdg‘𝐻) ∘ )‘((iEdg‘𝐺)‘𝑒)) = (𝑓𝑒))))
4847ex 412 . . . . 5 (𝐺 ∈ USPGraph → (:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅 → (∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖)) → ((𝑒𝐼𝑒𝑁) → (((iEdg‘𝐻) ∘ )‘((iEdg‘𝐺)‘𝑒)) = (𝑓𝑒)))))
49483imp1 1347 . . . 4 (((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅 ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖))) ∧ (𝑒𝐼𝑒𝑁)) → (((iEdg‘𝐻) ∘ )‘((iEdg‘𝐺)‘𝑒)) = (𝑓𝑒))
5015, 49eqtr2d 2770 . . 3 (((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅 ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖))) ∧ (𝑒𝐼𝑒𝑁)) → (𝑓𝑒) = ((((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺))‘𝑒))
5150ex 412 . 2 ((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅 ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖))) → ((𝑒𝐼𝑒𝑁) → (𝑓𝑒) = ((((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺))‘𝑒)))
523, 51biimtrid 242 1 ((𝐺 ∈ USPGraph ∧ :{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto𝑅 ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(𝑖))) → (𝑒𝐾 → (𝑓𝑒) = ((((iEdg‘𝐻) ∘ ) ∘ (iEdg‘𝐺))‘𝑒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  {crab 3419  wss 3931  ccnv 5664  dom cdm 5665  cima 5668  ccom 5669  wf 6537  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7413  Vtxcvtx 28942  iEdgciedg 28943  Edgcedg 28993  USPGraphcuspgr 29094   ClNeighbVtx cclnbgr 47778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-edg 28994  df-uspgr 29096
This theorem is referenced by:  uspgrlim  47932
  Copyright terms: Public domain W3C validator