Proof of Theorem uspgrlimlem4
Step | Hyp | Ref
| Expression |
1 | | eqid 2740 |
. . . . . . 7
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
2 | 1 | uspgrf1oedg 29200 |
. . . . . 6
⊢ (𝐺 ∈ USPGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→(Edg‘𝐺)) |
3 | | f1of 6857 |
. . . . . 6
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1-onto→(Edg‘𝐺) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(Edg‘𝐺)) |
4 | 2, 3 | syl 17 |
. . . . 5
⊢ (𝐺 ∈ USPGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)⟶(Edg‘𝐺)) |
5 | 4 | ad2antrr 725 |
. . . 4
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(Edg‘𝐺)) |
6 | | simpl 482 |
. . . 4
⊢ ((𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁) → 𝑖 ∈ dom (iEdg‘𝐺)) |
7 | | fvco3 7016 |
. . . . 5
⊢
(((iEdg‘𝐺):dom
(iEdg‘𝐺)⟶(Edg‘𝐺) ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → (((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖) = ((◡(iEdg‘𝐻) ∘ 𝑔)‘((iEdg‘𝐺)‘𝑖))) |
8 | 7 | fveq2d 6919 |
. . . 4
⊢
(((iEdg‘𝐺):dom
(iEdg‘𝐺)⟶(Edg‘𝐺) ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐻)‘(((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖)) = ((iEdg‘𝐻)‘((◡(iEdg‘𝐻) ∘ 𝑔)‘((iEdg‘𝐺)‘𝑖)))) |
9 | 5, 6, 8 | syl2an 595 |
. . 3
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → ((iEdg‘𝐻)‘(((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖)) = ((iEdg‘𝐻)‘((◡(iEdg‘𝐻) ∘ 𝑔)‘((iEdg‘𝐺)‘𝑖)))) |
10 | | eqid 2740 |
. . . . . . 7
⊢
(iEdg‘𝐻) =
(iEdg‘𝐻) |
11 | 10 | uspgrf1oedg 29200 |
. . . . . 6
⊢ (𝐻 ∈ USPGraph →
(iEdg‘𝐻):dom
(iEdg‘𝐻)–1-1-onto→(Edg‘𝐻)) |
12 | 11 | ad3antlr 730 |
. . . . 5
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → (iEdg‘𝐻):dom (iEdg‘𝐻)–1-1-onto→(Edg‘𝐻)) |
13 | | ssrab2 4103 |
. . . . . . 7
⊢ {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⊆ 𝐽 |
14 | | uspgrlim.l |
. . . . . . 7
⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} |
15 | | uspgrlim.j |
. . . . . . . 8
⊢ 𝐽 = (Edg‘𝐻) |
16 | 15 | eqcomi 2749 |
. . . . . . 7
⊢
(Edg‘𝐻) =
𝐽 |
17 | 13, 14, 16 | 3sstr4i 4052 |
. . . . . 6
⊢ 𝐿 ⊆ (Edg‘𝐻) |
18 | | f1of 6857 |
. . . . . . . . . 10
⊢ (𝑔:𝐾–1-1-onto→𝐿 → 𝑔:𝐾⟶𝐿) |
19 | 18 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒)) → 𝑔:𝐾⟶𝐿) |
20 | 19 | adantl 481 |
. . . . . . . 8
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → 𝑔:𝐾⟶𝐿) |
21 | 20 | adantr 480 |
. . . . . . 7
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → 𝑔:𝐾⟶𝐿) |
22 | 5 | ffund 6746 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → Fun (iEdg‘𝐺)) |
23 | 1 | iedgedg 29077 |
. . . . . . . . . 10
⊢ ((Fun
(iEdg‘𝐺) ∧ 𝑖 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑖) ∈ (Edg‘𝐺)) |
24 | 22, 6, 23 | syl2an 595 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → ((iEdg‘𝐺)‘𝑖) ∈ (Edg‘𝐺)) |
25 | | uspgrlim.i |
. . . . . . . . 9
⊢ 𝐼 = (Edg‘𝐺) |
26 | 24, 25 | eleqtrrdi 2855 |
. . . . . . . 8
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → ((iEdg‘𝐺)‘𝑖) ∈ 𝐼) |
27 | | simprr 772 |
. . . . . . . 8
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁) |
28 | | sseq1 4034 |
. . . . . . . . 9
⊢ (𝑥 = ((iEdg‘𝐺)‘𝑖) → (𝑥 ⊆ 𝑁 ↔ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) |
29 | | uspgrlim.k |
. . . . . . . . 9
⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} |
30 | 28, 29 | elrab2 3711 |
. . . . . . . 8
⊢
(((iEdg‘𝐺)‘𝑖) ∈ 𝐾 ↔ (((iEdg‘𝐺)‘𝑖) ∈ 𝐼 ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) |
31 | 26, 27, 30 | sylanbrc 582 |
. . . . . . 7
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → ((iEdg‘𝐺)‘𝑖) ∈ 𝐾) |
32 | 21, 31 | ffvelcdmd 7114 |
. . . . . 6
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → (𝑔‘((iEdg‘𝐺)‘𝑖)) ∈ 𝐿) |
33 | 17, 32 | sselid 4006 |
. . . . 5
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → (𝑔‘((iEdg‘𝐺)‘𝑖)) ∈ (Edg‘𝐻)) |
34 | | f1ocnvfv2 7308 |
. . . . 5
⊢
(((iEdg‘𝐻):dom
(iEdg‘𝐻)–1-1-onto→(Edg‘𝐻) ∧ (𝑔‘((iEdg‘𝐺)‘𝑖)) ∈ (Edg‘𝐻)) → ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘(𝑔‘((iEdg‘𝐺)‘𝑖)))) = (𝑔‘((iEdg‘𝐺)‘𝑖))) |
35 | 12, 33, 34 | syl2anc 583 |
. . . 4
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘(𝑔‘((iEdg‘𝐺)‘𝑖)))) = (𝑔‘((iEdg‘𝐺)‘𝑖))) |
36 | | fvco3 7016 |
. . . . . 6
⊢ ((𝑔:𝐾⟶𝐿 ∧ ((iEdg‘𝐺)‘𝑖) ∈ 𝐾) → ((◡(iEdg‘𝐻) ∘ 𝑔)‘((iEdg‘𝐺)‘𝑖)) = (◡(iEdg‘𝐻)‘(𝑔‘((iEdg‘𝐺)‘𝑖)))) |
37 | 36 | fveq2d 6919 |
. . . . 5
⊢ ((𝑔:𝐾⟶𝐿 ∧ ((iEdg‘𝐺)‘𝑖) ∈ 𝐾) → ((iEdg‘𝐻)‘((◡(iEdg‘𝐻) ∘ 𝑔)‘((iEdg‘𝐺)‘𝑖))) = ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘(𝑔‘((iEdg‘𝐺)‘𝑖))))) |
38 | 21, 31, 37 | syl2anc 583 |
. . . 4
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → ((iEdg‘𝐻)‘((◡(iEdg‘𝐻) ∘ 𝑔)‘((iEdg‘𝐺)‘𝑖))) = ((iEdg‘𝐻)‘(◡(iEdg‘𝐻)‘(𝑔‘((iEdg‘𝐺)‘𝑖))))) |
39 | 25 | eqcomi 2749 |
. . . . . . . . . . . . . . 15
⊢
(Edg‘𝐺) =
𝐼 |
40 | | feq3 6725 |
. . . . . . . . . . . . . . 15
⊢
((Edg‘𝐺) =
𝐼 → ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(Edg‘𝐺) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶𝐼)) |
41 | 39, 40 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)⟶(Edg‘𝐺) ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)⟶𝐼) |
42 | 41 | biimpi 216 |
. . . . . . . . . . . . 13
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)⟶(Edg‘𝐺) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶𝐼) |
43 | 2, 3, 42 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ USPGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)⟶𝐼) |
44 | 43 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶𝐼) |
45 | 6 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → 𝑖 ∈ dom (iEdg‘𝐺)) |
46 | 44, 45 | ffvelcdmd 7114 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → ((iEdg‘𝐺)‘𝑖) ∈ 𝐼) |
47 | | simprr 772 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁) |
48 | 46, 47, 30 | sylanbrc 582 |
. . . . . . . . 9
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → ((iEdg‘𝐺)‘𝑖) ∈ 𝐾) |
49 | | imaeq2 6080 |
. . . . . . . . . . 11
⊢ (𝑒 = ((iEdg‘𝐺)‘𝑖) → (𝑓 “ 𝑒) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) |
50 | | fveq2 6915 |
. . . . . . . . . . 11
⊢ (𝑒 = ((iEdg‘𝐺)‘𝑖) → (𝑔‘𝑒) = (𝑔‘((iEdg‘𝐺)‘𝑖))) |
51 | 49, 50 | eqeq12d 2756 |
. . . . . . . . . 10
⊢ (𝑒 = ((iEdg‘𝐺)‘𝑖) → ((𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (𝑔‘((iEdg‘𝐺)‘𝑖)))) |
52 | 51 | rspcv 3631 |
. . . . . . . . 9
⊢
(((iEdg‘𝐺)‘𝑖) ∈ 𝐾 → (∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (𝑔‘((iEdg‘𝐺)‘𝑖)))) |
53 | 48, 52 | syl 17 |
. . . . . . . 8
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → (∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (𝑔‘((iEdg‘𝐺)‘𝑖)))) |
54 | 53 | ex 412 |
. . . . . . 7
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁) → (∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (𝑔‘((iEdg‘𝐺)‘𝑖))))) |
55 | 54 | com23 86 |
. . . . . 6
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) →
(∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (𝑔‘((iEdg‘𝐺)‘𝑖))))) |
56 | 55 | adantld 490 |
. . . . 5
⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) → ((𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒)) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (𝑔‘((iEdg‘𝐺)‘𝑖))))) |
57 | 56 | imp31 417 |
. . . 4
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = (𝑔‘((iEdg‘𝐺)‘𝑖))) |
58 | 35, 38, 57 | 3eqtr4d 2790 |
. . 3
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → ((iEdg‘𝐻)‘((◡(iEdg‘𝐻) ∘ 𝑔)‘((iEdg‘𝐺)‘𝑖))) = (𝑓 “ ((iEdg‘𝐺)‘𝑖))) |
59 | 9, 58 | eqtr2d 2781 |
. 2
⊢ ((((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁)) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖))) |
60 | 59 | ex 412 |
1
⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖)))) |