Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqsscirc1 Structured version   Visualization version   GIF version

Theorem sqsscirc1 30488
Description: The complex square of side 𝐷 is a subset of the complex circle of radius 𝐷. (Contributed by Thierry Arnoux, 25-Sep-2017.)
Assertion
Ref Expression
sqsscirc1 ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) → ((𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2)) → (√‘((𝑋↑2) + (𝑌↑2))) < 𝐷))

Proof of Theorem sqsscirc1
StepHypRef Expression
1 simp-4l 801 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑋 ∈ ℝ)
21resqcld 13331 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑋↑2) ∈ ℝ)
3 simpllr 793 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌))
43simpld 490 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑌 ∈ ℝ)
54resqcld 13331 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌↑2) ∈ ℝ)
62, 5readdcld 10386 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → ((𝑋↑2) + (𝑌↑2)) ∈ ℝ)
71sqge0d 13332 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (𝑋↑2))
84sqge0d 13332 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (𝑌↑2))
92, 5, 7, 8addge0d 10928 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ ((𝑋↑2) + (𝑌↑2)))
106, 9resqrtcld 14533 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘((𝑋↑2) + (𝑌↑2))) ∈ ℝ)
11 simplr 785 . . . . . . . 8 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝐷 ∈ ℝ+)
1211rpred 12156 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝐷 ∈ ℝ)
1312rehalfcld 11605 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝐷 / 2) ∈ ℝ)
1413resqcld 13331 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → ((𝐷 / 2)↑2) ∈ ℝ)
1514, 14readdcld 10386 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)) ∈ ℝ)
1613sqge0d 13332 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ ((𝐷 / 2)↑2))
1714, 14, 16, 16addge0d 10928 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))
1815, 17resqrtcld 14533 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) ∈ ℝ)
19 simprl 787 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑋 < (𝐷 / 2))
20 simp-4r 803 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ 𝑋)
21 2rp 12117 . . . . . . . . 9 2 ∈ ℝ+
2221a1i 11 . . . . . . . 8 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 2 ∈ ℝ+)
2311rpge0d 12160 . . . . . . . 8 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ 𝐷)
2412, 22, 23divge0d 12196 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (𝐷 / 2))
251, 13, 20, 24lt2sqd 13339 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑋 < (𝐷 / 2) ↔ (𝑋↑2) < ((𝐷 / 2)↑2)))
2619, 25mpbid 224 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑋↑2) < ((𝐷 / 2)↑2))
27 simprr 789 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑌 < (𝐷 / 2))
283simprd 491 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ 𝑌)
294, 13, 28, 24lt2sqd 13339 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌 < (𝐷 / 2) ↔ (𝑌↑2) < ((𝐷 / 2)↑2)))
3027, 29mpbid 224 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌↑2) < ((𝐷 / 2)↑2))
312, 5, 14, 14, 26, 30lt2addd 10975 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → ((𝑋↑2) + (𝑌↑2)) < (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))
326, 9, 15, 17sqrtltd 14543 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (((𝑋↑2) + (𝑌↑2)) < (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)) ↔ (√‘((𝑋↑2) + (𝑌↑2))) < (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))))
3331, 32mpbid 224 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘((𝑋↑2) + (𝑌↑2))) < (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))))
34 rpre 12120 . . . . . . . . . . 11 (𝐷 ∈ ℝ+𝐷 ∈ ℝ)
3534rehalfcld 11605 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → (𝐷 / 2) ∈ ℝ)
3635resqcld 13331 . . . . . . . . 9 (𝐷 ∈ ℝ+ → ((𝐷 / 2)↑2) ∈ ℝ)
3736recnd 10385 . . . . . . . 8 (𝐷 ∈ ℝ+ → ((𝐷 / 2)↑2) ∈ ℂ)
38372timesd 11601 . . . . . . 7 (𝐷 ∈ ℝ+ → (2 · ((𝐷 / 2)↑2)) = (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))
3938fveq2d 6437 . . . . . 6 (𝐷 ∈ ℝ+ → (√‘(2 · ((𝐷 / 2)↑2))) = (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))))
4021a1i 11 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → 2 ∈ ℝ+)
41 rpge0 12127 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → 0 ≤ 𝐷)
4234, 40, 41divge0d 12196 . . . . . . . . 9 (𝐷 ∈ ℝ+ → 0 ≤ (𝐷 / 2))
4335, 42sqrtsqd 14535 . . . . . . . 8 (𝐷 ∈ ℝ+ → (√‘((𝐷 / 2)↑2)) = (𝐷 / 2))
4443oveq2d 6921 . . . . . . 7 (𝐷 ∈ ℝ+ → ((√‘2) · (√‘((𝐷 / 2)↑2))) = ((√‘2) · (𝐷 / 2)))
45 2re 11425 . . . . . . . . 9 2 ∈ ℝ
4645a1i 11 . . . . . . . 8 (𝐷 ∈ ℝ+ → 2 ∈ ℝ)
47 0le2 11460 . . . . . . . . 9 0 ≤ 2
4847a1i 11 . . . . . . . 8 (𝐷 ∈ ℝ+ → 0 ≤ 2)
4935sqge0d 13332 . . . . . . . 8 (𝐷 ∈ ℝ+ → 0 ≤ ((𝐷 / 2)↑2))
5046, 48, 36, 49sqrtmuld 14540 . . . . . . 7 (𝐷 ∈ ℝ+ → (√‘(2 · ((𝐷 / 2)↑2))) = ((√‘2) · (√‘((𝐷 / 2)↑2))))
51 2cnd 11429 . . . . . . . . 9 (𝐷 ∈ ℝ+ → 2 ∈ ℂ)
5251sqrtcld 14553 . . . . . . . 8 (𝐷 ∈ ℝ+ → (√‘2) ∈ ℂ)
53 rpcn 12124 . . . . . . . 8 (𝐷 ∈ ℝ+𝐷 ∈ ℂ)
54 2ne0 11462 . . . . . . . . 9 2 ≠ 0
5554a1i 11 . . . . . . . 8 (𝐷 ∈ ℝ+ → 2 ≠ 0)
5652, 51, 53, 55div32d 11150 . . . . . . 7 (𝐷 ∈ ℝ+ → (((√‘2) / 2) · 𝐷) = ((√‘2) · (𝐷 / 2)))
5744, 50, 563eqtr4d 2871 . . . . . 6 (𝐷 ∈ ℝ+ → (√‘(2 · ((𝐷 / 2)↑2))) = (((√‘2) / 2) · 𝐷))
5839, 57eqtr3d 2863 . . . . 5 (𝐷 ∈ ℝ+ → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) = (((√‘2) / 2) · 𝐷))
59 2lt4 11533 . . . . . . . . . 10 2 < 4
60 4re 11436 . . . . . . . . . . 11 4 ∈ ℝ
61 0re 10358 . . . . . . . . . . . 12 0 ∈ ℝ
62 4pos 11465 . . . . . . . . . . . 12 0 < 4
6361, 60, 62ltleii 10479 . . . . . . . . . . 11 0 ≤ 4
64 sqrtlt 14379 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (4 ∈ ℝ ∧ 0 ≤ 4)) → (2 < 4 ↔ (√‘2) < (√‘4)))
6545, 47, 60, 63, 64mp4an 684 . . . . . . . . . 10 (2 < 4 ↔ (√‘2) < (√‘4))
6659, 65mpbi 222 . . . . . . . . 9 (√‘2) < (√‘4)
67 2pos 11461 . . . . . . . . . . 11 0 < 2
6845, 67sqrtpclii 14499 . . . . . . . . . 10 (√‘2) ∈ ℝ
6960, 62sqrtpclii 14499 . . . . . . . . . 10 (√‘4) ∈ ℝ
7068, 69, 45, 67ltdiv1ii 11283 . . . . . . . . 9 ((√‘2) < (√‘4) ↔ ((√‘2) / 2) < ((√‘4) / 2))
7166, 70mpbi 222 . . . . . . . 8 ((√‘2) / 2) < ((√‘4) / 2)
72 sqrtsq 14387 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 0 ≤ 2) → (√‘(2↑2)) = 2)
7345, 47, 72mp2an 683 . . . . . . . . . 10 (√‘(2↑2)) = 2
7473oveq1i 6915 . . . . . . . . 9 ((√‘(2↑2)) / 2) = (2 / 2)
75 sq2 13254 . . . . . . . . . . 11 (2↑2) = 4
7675fveq2i 6436 . . . . . . . . . 10 (√‘(2↑2)) = (√‘4)
7776oveq1i 6915 . . . . . . . . 9 ((√‘(2↑2)) / 2) = ((√‘4) / 2)
78 2div2e1 11499 . . . . . . . . 9 (2 / 2) = 1
7974, 77, 783eqtr3i 2857 . . . . . . . 8 ((√‘4) / 2) = 1
8071, 79breqtri 4898 . . . . . . 7 ((√‘2) / 2) < 1
8146, 48resqrtcld 14533 . . . . . . . . 9 (𝐷 ∈ ℝ+ → (√‘2) ∈ ℝ)
8281rehalfcld 11605 . . . . . . . 8 (𝐷 ∈ ℝ+ → ((√‘2) / 2) ∈ ℝ)
83 1red 10357 . . . . . . . 8 (𝐷 ∈ ℝ+ → 1 ∈ ℝ)
84 id 22 . . . . . . . 8 (𝐷 ∈ ℝ+𝐷 ∈ ℝ+)
8582, 83, 84ltmul1d 12197 . . . . . . 7 (𝐷 ∈ ℝ+ → (((√‘2) / 2) < 1 ↔ (((√‘2) / 2) · 𝐷) < (1 · 𝐷)))
8680, 85mpbii 225 . . . . . 6 (𝐷 ∈ ℝ+ → (((√‘2) / 2) · 𝐷) < (1 · 𝐷))
8753mulid2d 10375 . . . . . 6 (𝐷 ∈ ℝ+ → (1 · 𝐷) = 𝐷)
8886, 87breqtrd 4899 . . . . 5 (𝐷 ∈ ℝ+ → (((√‘2) / 2) · 𝐷) < 𝐷)
8958, 88eqbrtrd 4895 . . . 4 (𝐷 ∈ ℝ+ → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) < 𝐷)
9011, 89syl 17 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) < 𝐷)
9110, 18, 12, 33, 90lttrd 10517 . 2 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘((𝑋↑2) + (𝑌↑2))) < 𝐷)
9291ex 403 1 ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) → ((𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2)) → (√‘((𝑋↑2) + (𝑌↑2))) < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wne 2999   class class class wbr 4873  cfv 6123  (class class class)co 6905  cr 10251  0cc0 10252  1c1 10253   + caddc 10255   · cmul 10257   < clt 10391  cle 10392   / cdiv 11009  2c2 11406  4c4 11408  +crp 12112  cexp 13154  csqrt 14350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-sup 8617  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-seq 13096  df-exp 13155  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353
This theorem is referenced by:  sqsscirc2  30489
  Copyright terms: Public domain W3C validator