Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqsscirc1 Structured version   Visualization version   GIF version

Theorem sqsscirc1 33869
Description: The complex square of side 𝐷 is a subset of the complex circle of radius 𝐷. (Contributed by Thierry Arnoux, 25-Sep-2017.)
Assertion
Ref Expression
sqsscirc1 ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) → ((𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2)) → (√‘((𝑋↑2) + (𝑌↑2))) < 𝐷))

Proof of Theorem sqsscirc1
StepHypRef Expression
1 simp-4l 783 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑋 ∈ ℝ)
21resqcld 14162 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑋↑2) ∈ ℝ)
3 simpllr 776 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌))
43simpld 494 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑌 ∈ ℝ)
54resqcld 14162 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌↑2) ∈ ℝ)
62, 5readdcld 11288 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → ((𝑋↑2) + (𝑌↑2)) ∈ ℝ)
71sqge0d 14174 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (𝑋↑2))
84sqge0d 14174 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (𝑌↑2))
92, 5, 7, 8addge0d 11837 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ ((𝑋↑2) + (𝑌↑2)))
106, 9resqrtcld 15453 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘((𝑋↑2) + (𝑌↑2))) ∈ ℝ)
11 simplr 769 . . . . . . . 8 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝐷 ∈ ℝ+)
1211rpred 13075 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝐷 ∈ ℝ)
1312rehalfcld 12511 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝐷 / 2) ∈ ℝ)
1413resqcld 14162 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → ((𝐷 / 2)↑2) ∈ ℝ)
1514, 14readdcld 11288 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)) ∈ ℝ)
1613sqge0d 14174 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ ((𝐷 / 2)↑2))
1714, 14, 16, 16addge0d 11837 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))
1815, 17resqrtcld 15453 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) ∈ ℝ)
19 simprl 771 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑋 < (𝐷 / 2))
20 simp-4r 784 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ 𝑋)
21 2rp 13037 . . . . . . . . 9 2 ∈ ℝ+
2221a1i 11 . . . . . . . 8 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 2 ∈ ℝ+)
2311rpge0d 13079 . . . . . . . 8 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ 𝐷)
2412, 22, 23divge0d 13115 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (𝐷 / 2))
251, 13, 20, 24lt2sqd 14292 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑋 < (𝐷 / 2) ↔ (𝑋↑2) < ((𝐷 / 2)↑2)))
2619, 25mpbid 232 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑋↑2) < ((𝐷 / 2)↑2))
27 simprr 773 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑌 < (𝐷 / 2))
283simprd 495 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ 𝑌)
294, 13, 28, 24lt2sqd 14292 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌 < (𝐷 / 2) ↔ (𝑌↑2) < ((𝐷 / 2)↑2)))
3027, 29mpbid 232 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌↑2) < ((𝐷 / 2)↑2))
312, 5, 14, 14, 26, 30lt2addd 11884 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → ((𝑋↑2) + (𝑌↑2)) < (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))
326, 9, 15, 17sqrtltd 15463 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (((𝑋↑2) + (𝑌↑2)) < (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)) ↔ (√‘((𝑋↑2) + (𝑌↑2))) < (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))))
3331, 32mpbid 232 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘((𝑋↑2) + (𝑌↑2))) < (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))))
34 rpre 13041 . . . . . . . . . . 11 (𝐷 ∈ ℝ+𝐷 ∈ ℝ)
3534rehalfcld 12511 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → (𝐷 / 2) ∈ ℝ)
3635resqcld 14162 . . . . . . . . 9 (𝐷 ∈ ℝ+ → ((𝐷 / 2)↑2) ∈ ℝ)
3736recnd 11287 . . . . . . . 8 (𝐷 ∈ ℝ+ → ((𝐷 / 2)↑2) ∈ ℂ)
38372timesd 12507 . . . . . . 7 (𝐷 ∈ ℝ+ → (2 · ((𝐷 / 2)↑2)) = (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))
3938fveq2d 6911 . . . . . 6 (𝐷 ∈ ℝ+ → (√‘(2 · ((𝐷 / 2)↑2))) = (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))))
4021a1i 11 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → 2 ∈ ℝ+)
41 rpge0 13046 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → 0 ≤ 𝐷)
4234, 40, 41divge0d 13115 . . . . . . . . 9 (𝐷 ∈ ℝ+ → 0 ≤ (𝐷 / 2))
4335, 42sqrtsqd 15455 . . . . . . . 8 (𝐷 ∈ ℝ+ → (√‘((𝐷 / 2)↑2)) = (𝐷 / 2))
4443oveq2d 7447 . . . . . . 7 (𝐷 ∈ ℝ+ → ((√‘2) · (√‘((𝐷 / 2)↑2))) = ((√‘2) · (𝐷 / 2)))
45 2re 12338 . . . . . . . . 9 2 ∈ ℝ
4645a1i 11 . . . . . . . 8 (𝐷 ∈ ℝ+ → 2 ∈ ℝ)
47 0le2 12366 . . . . . . . . 9 0 ≤ 2
4847a1i 11 . . . . . . . 8 (𝐷 ∈ ℝ+ → 0 ≤ 2)
4935sqge0d 14174 . . . . . . . 8 (𝐷 ∈ ℝ+ → 0 ≤ ((𝐷 / 2)↑2))
5046, 48, 36, 49sqrtmuld 15460 . . . . . . 7 (𝐷 ∈ ℝ+ → (√‘(2 · ((𝐷 / 2)↑2))) = ((√‘2) · (√‘((𝐷 / 2)↑2))))
51 2cnd 12342 . . . . . . . . 9 (𝐷 ∈ ℝ+ → 2 ∈ ℂ)
5251sqrtcld 15473 . . . . . . . 8 (𝐷 ∈ ℝ+ → (√‘2) ∈ ℂ)
53 rpcn 13043 . . . . . . . 8 (𝐷 ∈ ℝ+𝐷 ∈ ℂ)
54 2ne0 12368 . . . . . . . . 9 2 ≠ 0
5554a1i 11 . . . . . . . 8 (𝐷 ∈ ℝ+ → 2 ≠ 0)
5652, 51, 53, 55div32d 12064 . . . . . . 7 (𝐷 ∈ ℝ+ → (((√‘2) / 2) · 𝐷) = ((√‘2) · (𝐷 / 2)))
5744, 50, 563eqtr4d 2785 . . . . . 6 (𝐷 ∈ ℝ+ → (√‘(2 · ((𝐷 / 2)↑2))) = (((√‘2) / 2) · 𝐷))
5839, 57eqtr3d 2777 . . . . 5 (𝐷 ∈ ℝ+ → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) = (((√‘2) / 2) · 𝐷))
59 2lt4 12439 . . . . . . . . . 10 2 < 4
60 4re 12348 . . . . . . . . . . 11 4 ∈ ℝ
61 0re 11261 . . . . . . . . . . . 12 0 ∈ ℝ
62 4pos 12371 . . . . . . . . . . . 12 0 < 4
6361, 60, 62ltleii 11382 . . . . . . . . . . 11 0 ≤ 4
64 sqrtlt 15297 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (4 ∈ ℝ ∧ 0 ≤ 4)) → (2 < 4 ↔ (√‘2) < (√‘4)))
6545, 47, 60, 63, 64mp4an 693 . . . . . . . . . 10 (2 < 4 ↔ (√‘2) < (√‘4))
6659, 65mpbi 230 . . . . . . . . 9 (√‘2) < (√‘4)
67 2pos 12367 . . . . . . . . . . 11 0 < 2
6845, 67sqrtpclii 15418 . . . . . . . . . 10 (√‘2) ∈ ℝ
6960, 62sqrtpclii 15418 . . . . . . . . . 10 (√‘4) ∈ ℝ
7068, 69, 45, 67ltdiv1ii 12195 . . . . . . . . 9 ((√‘2) < (√‘4) ↔ ((√‘2) / 2) < ((√‘4) / 2))
7166, 70mpbi 230 . . . . . . . 8 ((√‘2) / 2) < ((√‘4) / 2)
72 sqrtsq 15305 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 0 ≤ 2) → (√‘(2↑2)) = 2)
7345, 47, 72mp2an 692 . . . . . . . . . 10 (√‘(2↑2)) = 2
7473oveq1i 7441 . . . . . . . . 9 ((√‘(2↑2)) / 2) = (2 / 2)
75 sq2 14233 . . . . . . . . . . 11 (2↑2) = 4
7675fveq2i 6910 . . . . . . . . . 10 (√‘(2↑2)) = (√‘4)
7776oveq1i 7441 . . . . . . . . 9 ((√‘(2↑2)) / 2) = ((√‘4) / 2)
78 2div2e1 12405 . . . . . . . . 9 (2 / 2) = 1
7974, 77, 783eqtr3i 2771 . . . . . . . 8 ((√‘4) / 2) = 1
8071, 79breqtri 5173 . . . . . . 7 ((√‘2) / 2) < 1
8146, 48resqrtcld 15453 . . . . . . . . 9 (𝐷 ∈ ℝ+ → (√‘2) ∈ ℝ)
8281rehalfcld 12511 . . . . . . . 8 (𝐷 ∈ ℝ+ → ((√‘2) / 2) ∈ ℝ)
83 1red 11260 . . . . . . . 8 (𝐷 ∈ ℝ+ → 1 ∈ ℝ)
84 id 22 . . . . . . . 8 (𝐷 ∈ ℝ+𝐷 ∈ ℝ+)
8582, 83, 84ltmul1d 13116 . . . . . . 7 (𝐷 ∈ ℝ+ → (((√‘2) / 2) < 1 ↔ (((√‘2) / 2) · 𝐷) < (1 · 𝐷)))
8680, 85mpbii 233 . . . . . 6 (𝐷 ∈ ℝ+ → (((√‘2) / 2) · 𝐷) < (1 · 𝐷))
8753mullidd 11277 . . . . . 6 (𝐷 ∈ ℝ+ → (1 · 𝐷) = 𝐷)
8886, 87breqtrd 5174 . . . . 5 (𝐷 ∈ ℝ+ → (((√‘2) / 2) · 𝐷) < 𝐷)
8958, 88eqbrtrd 5170 . . . 4 (𝐷 ∈ ℝ+ → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) < 𝐷)
9011, 89syl 17 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) < 𝐷)
9110, 18, 12, 33, 90lttrd 11420 . 2 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘((𝑋↑2) + (𝑌↑2))) < 𝐷)
9291ex 412 1 ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) → ((𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2)) → (√‘((𝑋↑2) + (𝑌↑2))) < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294   / cdiv 11918  2c2 12319  4c4 12321  +crp 13032  cexp 14099  csqrt 15269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272
This theorem is referenced by:  sqsscirc2  33870
  Copyright terms: Public domain W3C validator