Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqsscirc1 Structured version   Visualization version   GIF version

Theorem sqsscirc1 31858
Description: The complex square of side 𝐷 is a subset of the complex circle of radius 𝐷. (Contributed by Thierry Arnoux, 25-Sep-2017.)
Assertion
Ref Expression
sqsscirc1 ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) → ((𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2)) → (√‘((𝑋↑2) + (𝑌↑2))) < 𝐷))

Proof of Theorem sqsscirc1
StepHypRef Expression
1 simp-4l 780 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑋 ∈ ℝ)
21resqcld 13965 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑋↑2) ∈ ℝ)
3 simpllr 773 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌))
43simpld 495 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑌 ∈ ℝ)
54resqcld 13965 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌↑2) ∈ ℝ)
62, 5readdcld 11004 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → ((𝑋↑2) + (𝑌↑2)) ∈ ℝ)
71sqge0d 13966 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (𝑋↑2))
84sqge0d 13966 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (𝑌↑2))
92, 5, 7, 8addge0d 11551 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ ((𝑋↑2) + (𝑌↑2)))
106, 9resqrtcld 15129 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘((𝑋↑2) + (𝑌↑2))) ∈ ℝ)
11 simplr 766 . . . . . . . 8 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝐷 ∈ ℝ+)
1211rpred 12772 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝐷 ∈ ℝ)
1312rehalfcld 12220 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝐷 / 2) ∈ ℝ)
1413resqcld 13965 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → ((𝐷 / 2)↑2) ∈ ℝ)
1514, 14readdcld 11004 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)) ∈ ℝ)
1613sqge0d 13966 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ ((𝐷 / 2)↑2))
1714, 14, 16, 16addge0d 11551 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))
1815, 17resqrtcld 15129 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) ∈ ℝ)
19 simprl 768 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑋 < (𝐷 / 2))
20 simp-4r 781 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ 𝑋)
21 2rp 12735 . . . . . . . . 9 2 ∈ ℝ+
2221a1i 11 . . . . . . . 8 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 2 ∈ ℝ+)
2311rpge0d 12776 . . . . . . . 8 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ 𝐷)
2412, 22, 23divge0d 12812 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (𝐷 / 2))
251, 13, 20, 24lt2sqd 13973 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑋 < (𝐷 / 2) ↔ (𝑋↑2) < ((𝐷 / 2)↑2)))
2619, 25mpbid 231 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑋↑2) < ((𝐷 / 2)↑2))
27 simprr 770 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑌 < (𝐷 / 2))
283simprd 496 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ 𝑌)
294, 13, 28, 24lt2sqd 13973 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌 < (𝐷 / 2) ↔ (𝑌↑2) < ((𝐷 / 2)↑2)))
3027, 29mpbid 231 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌↑2) < ((𝐷 / 2)↑2))
312, 5, 14, 14, 26, 30lt2addd 11598 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → ((𝑋↑2) + (𝑌↑2)) < (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))
326, 9, 15, 17sqrtltd 15139 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (((𝑋↑2) + (𝑌↑2)) < (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)) ↔ (√‘((𝑋↑2) + (𝑌↑2))) < (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))))
3331, 32mpbid 231 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘((𝑋↑2) + (𝑌↑2))) < (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))))
34 rpre 12738 . . . . . . . . . . 11 (𝐷 ∈ ℝ+𝐷 ∈ ℝ)
3534rehalfcld 12220 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → (𝐷 / 2) ∈ ℝ)
3635resqcld 13965 . . . . . . . . 9 (𝐷 ∈ ℝ+ → ((𝐷 / 2)↑2) ∈ ℝ)
3736recnd 11003 . . . . . . . 8 (𝐷 ∈ ℝ+ → ((𝐷 / 2)↑2) ∈ ℂ)
38372timesd 12216 . . . . . . 7 (𝐷 ∈ ℝ+ → (2 · ((𝐷 / 2)↑2)) = (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))
3938fveq2d 6778 . . . . . 6 (𝐷 ∈ ℝ+ → (√‘(2 · ((𝐷 / 2)↑2))) = (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))))
4021a1i 11 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → 2 ∈ ℝ+)
41 rpge0 12743 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → 0 ≤ 𝐷)
4234, 40, 41divge0d 12812 . . . . . . . . 9 (𝐷 ∈ ℝ+ → 0 ≤ (𝐷 / 2))
4335, 42sqrtsqd 15131 . . . . . . . 8 (𝐷 ∈ ℝ+ → (√‘((𝐷 / 2)↑2)) = (𝐷 / 2))
4443oveq2d 7291 . . . . . . 7 (𝐷 ∈ ℝ+ → ((√‘2) · (√‘((𝐷 / 2)↑2))) = ((√‘2) · (𝐷 / 2)))
45 2re 12047 . . . . . . . . 9 2 ∈ ℝ
4645a1i 11 . . . . . . . 8 (𝐷 ∈ ℝ+ → 2 ∈ ℝ)
47 0le2 12075 . . . . . . . . 9 0 ≤ 2
4847a1i 11 . . . . . . . 8 (𝐷 ∈ ℝ+ → 0 ≤ 2)
4935sqge0d 13966 . . . . . . . 8 (𝐷 ∈ ℝ+ → 0 ≤ ((𝐷 / 2)↑2))
5046, 48, 36, 49sqrtmuld 15136 . . . . . . 7 (𝐷 ∈ ℝ+ → (√‘(2 · ((𝐷 / 2)↑2))) = ((√‘2) · (√‘((𝐷 / 2)↑2))))
51 2cnd 12051 . . . . . . . . 9 (𝐷 ∈ ℝ+ → 2 ∈ ℂ)
5251sqrtcld 15149 . . . . . . . 8 (𝐷 ∈ ℝ+ → (√‘2) ∈ ℂ)
53 rpcn 12740 . . . . . . . 8 (𝐷 ∈ ℝ+𝐷 ∈ ℂ)
54 2ne0 12077 . . . . . . . . 9 2 ≠ 0
5554a1i 11 . . . . . . . 8 (𝐷 ∈ ℝ+ → 2 ≠ 0)
5652, 51, 53, 55div32d 11774 . . . . . . 7 (𝐷 ∈ ℝ+ → (((√‘2) / 2) · 𝐷) = ((√‘2) · (𝐷 / 2)))
5744, 50, 563eqtr4d 2788 . . . . . 6 (𝐷 ∈ ℝ+ → (√‘(2 · ((𝐷 / 2)↑2))) = (((√‘2) / 2) · 𝐷))
5839, 57eqtr3d 2780 . . . . 5 (𝐷 ∈ ℝ+ → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) = (((√‘2) / 2) · 𝐷))
59 2lt4 12148 . . . . . . . . . 10 2 < 4
60 4re 12057 . . . . . . . . . . 11 4 ∈ ℝ
61 0re 10977 . . . . . . . . . . . 12 0 ∈ ℝ
62 4pos 12080 . . . . . . . . . . . 12 0 < 4
6361, 60, 62ltleii 11098 . . . . . . . . . . 11 0 ≤ 4
64 sqrtlt 14973 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (4 ∈ ℝ ∧ 0 ≤ 4)) → (2 < 4 ↔ (√‘2) < (√‘4)))
6545, 47, 60, 63, 64mp4an 690 . . . . . . . . . 10 (2 < 4 ↔ (√‘2) < (√‘4))
6659, 65mpbi 229 . . . . . . . . 9 (√‘2) < (√‘4)
67 2pos 12076 . . . . . . . . . . 11 0 < 2
6845, 67sqrtpclii 15094 . . . . . . . . . 10 (√‘2) ∈ ℝ
6960, 62sqrtpclii 15094 . . . . . . . . . 10 (√‘4) ∈ ℝ
7068, 69, 45, 67ltdiv1ii 11904 . . . . . . . . 9 ((√‘2) < (√‘4) ↔ ((√‘2) / 2) < ((√‘4) / 2))
7166, 70mpbi 229 . . . . . . . 8 ((√‘2) / 2) < ((√‘4) / 2)
72 sqrtsq 14981 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 0 ≤ 2) → (√‘(2↑2)) = 2)
7345, 47, 72mp2an 689 . . . . . . . . . 10 (√‘(2↑2)) = 2
7473oveq1i 7285 . . . . . . . . 9 ((√‘(2↑2)) / 2) = (2 / 2)
75 sq2 13914 . . . . . . . . . . 11 (2↑2) = 4
7675fveq2i 6777 . . . . . . . . . 10 (√‘(2↑2)) = (√‘4)
7776oveq1i 7285 . . . . . . . . 9 ((√‘(2↑2)) / 2) = ((√‘4) / 2)
78 2div2e1 12114 . . . . . . . . 9 (2 / 2) = 1
7974, 77, 783eqtr3i 2774 . . . . . . . 8 ((√‘4) / 2) = 1
8071, 79breqtri 5099 . . . . . . 7 ((√‘2) / 2) < 1
8146, 48resqrtcld 15129 . . . . . . . . 9 (𝐷 ∈ ℝ+ → (√‘2) ∈ ℝ)
8281rehalfcld 12220 . . . . . . . 8 (𝐷 ∈ ℝ+ → ((√‘2) / 2) ∈ ℝ)
83 1red 10976 . . . . . . . 8 (𝐷 ∈ ℝ+ → 1 ∈ ℝ)
84 id 22 . . . . . . . 8 (𝐷 ∈ ℝ+𝐷 ∈ ℝ+)
8582, 83, 84ltmul1d 12813 . . . . . . 7 (𝐷 ∈ ℝ+ → (((√‘2) / 2) < 1 ↔ (((√‘2) / 2) · 𝐷) < (1 · 𝐷)))
8680, 85mpbii 232 . . . . . 6 (𝐷 ∈ ℝ+ → (((√‘2) / 2) · 𝐷) < (1 · 𝐷))
8753mulid2d 10993 . . . . . 6 (𝐷 ∈ ℝ+ → (1 · 𝐷) = 𝐷)
8886, 87breqtrd 5100 . . . . 5 (𝐷 ∈ ℝ+ → (((√‘2) / 2) · 𝐷) < 𝐷)
8958, 88eqbrtrd 5096 . . . 4 (𝐷 ∈ ℝ+ → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) < 𝐷)
9011, 89syl 17 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) < 𝐷)
9110, 18, 12, 33, 90lttrd 11136 . 2 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘((𝑋↑2) + (𝑌↑2))) < 𝐷)
9291ex 413 1 ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) → ((𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2)) → (√‘((𝑋↑2) + (𝑌↑2))) < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010   / cdiv 11632  2c2 12028  4c4 12030  +crp 12730  cexp 13782  csqrt 14944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947
This theorem is referenced by:  sqsscirc2  31859
  Copyright terms: Public domain W3C validator