Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sqsscirc1 Structured version   Visualization version   GIF version

Theorem sqsscirc1 33640
Description: The complex square of side 𝐷 is a subset of the complex circle of radius 𝐷. (Contributed by Thierry Arnoux, 25-Sep-2017.)
Assertion
Ref Expression
sqsscirc1 ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) → ((𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2)) → (√‘((𝑋↑2) + (𝑌↑2))) < 𝐷))

Proof of Theorem sqsscirc1
StepHypRef Expression
1 simp-4l 781 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑋 ∈ ℝ)
21resqcld 14125 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑋↑2) ∈ ℝ)
3 simpllr 774 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌))
43simpld 493 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑌 ∈ ℝ)
54resqcld 14125 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌↑2) ∈ ℝ)
62, 5readdcld 11275 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → ((𝑋↑2) + (𝑌↑2)) ∈ ℝ)
71sqge0d 14137 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (𝑋↑2))
84sqge0d 14137 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (𝑌↑2))
92, 5, 7, 8addge0d 11822 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ ((𝑋↑2) + (𝑌↑2)))
106, 9resqrtcld 15400 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘((𝑋↑2) + (𝑌↑2))) ∈ ℝ)
11 simplr 767 . . . . . . . 8 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝐷 ∈ ℝ+)
1211rpred 13051 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝐷 ∈ ℝ)
1312rehalfcld 12492 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝐷 / 2) ∈ ℝ)
1413resqcld 14125 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → ((𝐷 / 2)↑2) ∈ ℝ)
1514, 14readdcld 11275 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)) ∈ ℝ)
1613sqge0d 14137 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ ((𝐷 / 2)↑2))
1714, 14, 16, 16addge0d 11822 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))
1815, 17resqrtcld 15400 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) ∈ ℝ)
19 simprl 769 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑋 < (𝐷 / 2))
20 simp-4r 782 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ 𝑋)
21 2rp 13014 . . . . . . . . 9 2 ∈ ℝ+
2221a1i 11 . . . . . . . 8 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 2 ∈ ℝ+)
2311rpge0d 13055 . . . . . . . 8 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ 𝐷)
2412, 22, 23divge0d 13091 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ (𝐷 / 2))
251, 13, 20, 24lt2sqd 14254 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑋 < (𝐷 / 2) ↔ (𝑋↑2) < ((𝐷 / 2)↑2)))
2619, 25mpbid 231 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑋↑2) < ((𝐷 / 2)↑2))
27 simprr 771 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 𝑌 < (𝐷 / 2))
283simprd 494 . . . . . . 7 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → 0 ≤ 𝑌)
294, 13, 28, 24lt2sqd 14254 . . . . . 6 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌 < (𝐷 / 2) ↔ (𝑌↑2) < ((𝐷 / 2)↑2)))
3027, 29mpbid 231 . . . . 5 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (𝑌↑2) < ((𝐷 / 2)↑2))
312, 5, 14, 14, 26, 30lt2addd 11869 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → ((𝑋↑2) + (𝑌↑2)) < (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))
326, 9, 15, 17sqrtltd 15410 . . . 4 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (((𝑋↑2) + (𝑌↑2)) < (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)) ↔ (√‘((𝑋↑2) + (𝑌↑2))) < (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))))
3331, 32mpbid 231 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘((𝑋↑2) + (𝑌↑2))) < (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))))
34 rpre 13017 . . . . . . . . . . 11 (𝐷 ∈ ℝ+𝐷 ∈ ℝ)
3534rehalfcld 12492 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → (𝐷 / 2) ∈ ℝ)
3635resqcld 14125 . . . . . . . . 9 (𝐷 ∈ ℝ+ → ((𝐷 / 2)↑2) ∈ ℝ)
3736recnd 11274 . . . . . . . 8 (𝐷 ∈ ℝ+ → ((𝐷 / 2)↑2) ∈ ℂ)
38372timesd 12488 . . . . . . 7 (𝐷 ∈ ℝ+ → (2 · ((𝐷 / 2)↑2)) = (((𝐷 / 2)↑2) + ((𝐷 / 2)↑2)))
3938fveq2d 6900 . . . . . 6 (𝐷 ∈ ℝ+ → (√‘(2 · ((𝐷 / 2)↑2))) = (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))))
4021a1i 11 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → 2 ∈ ℝ+)
41 rpge0 13022 . . . . . . . . . 10 (𝐷 ∈ ℝ+ → 0 ≤ 𝐷)
4234, 40, 41divge0d 13091 . . . . . . . . 9 (𝐷 ∈ ℝ+ → 0 ≤ (𝐷 / 2))
4335, 42sqrtsqd 15402 . . . . . . . 8 (𝐷 ∈ ℝ+ → (√‘((𝐷 / 2)↑2)) = (𝐷 / 2))
4443oveq2d 7435 . . . . . . 7 (𝐷 ∈ ℝ+ → ((√‘2) · (√‘((𝐷 / 2)↑2))) = ((√‘2) · (𝐷 / 2)))
45 2re 12319 . . . . . . . . 9 2 ∈ ℝ
4645a1i 11 . . . . . . . 8 (𝐷 ∈ ℝ+ → 2 ∈ ℝ)
47 0le2 12347 . . . . . . . . 9 0 ≤ 2
4847a1i 11 . . . . . . . 8 (𝐷 ∈ ℝ+ → 0 ≤ 2)
4935sqge0d 14137 . . . . . . . 8 (𝐷 ∈ ℝ+ → 0 ≤ ((𝐷 / 2)↑2))
5046, 48, 36, 49sqrtmuld 15407 . . . . . . 7 (𝐷 ∈ ℝ+ → (√‘(2 · ((𝐷 / 2)↑2))) = ((√‘2) · (√‘((𝐷 / 2)↑2))))
51 2cnd 12323 . . . . . . . . 9 (𝐷 ∈ ℝ+ → 2 ∈ ℂ)
5251sqrtcld 15420 . . . . . . . 8 (𝐷 ∈ ℝ+ → (√‘2) ∈ ℂ)
53 rpcn 13019 . . . . . . . 8 (𝐷 ∈ ℝ+𝐷 ∈ ℂ)
54 2ne0 12349 . . . . . . . . 9 2 ≠ 0
5554a1i 11 . . . . . . . 8 (𝐷 ∈ ℝ+ → 2 ≠ 0)
5652, 51, 53, 55div32d 12046 . . . . . . 7 (𝐷 ∈ ℝ+ → (((√‘2) / 2) · 𝐷) = ((√‘2) · (𝐷 / 2)))
5744, 50, 563eqtr4d 2775 . . . . . 6 (𝐷 ∈ ℝ+ → (√‘(2 · ((𝐷 / 2)↑2))) = (((√‘2) / 2) · 𝐷))
5839, 57eqtr3d 2767 . . . . 5 (𝐷 ∈ ℝ+ → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) = (((√‘2) / 2) · 𝐷))
59 2lt4 12420 . . . . . . . . . 10 2 < 4
60 4re 12329 . . . . . . . . . . 11 4 ∈ ℝ
61 0re 11248 . . . . . . . . . . . 12 0 ∈ ℝ
62 4pos 12352 . . . . . . . . . . . 12 0 < 4
6361, 60, 62ltleii 11369 . . . . . . . . . . 11 0 ≤ 4
64 sqrtlt 15244 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ (4 ∈ ℝ ∧ 0 ≤ 4)) → (2 < 4 ↔ (√‘2) < (√‘4)))
6545, 47, 60, 63, 64mp4an 691 . . . . . . . . . 10 (2 < 4 ↔ (√‘2) < (√‘4))
6659, 65mpbi 229 . . . . . . . . 9 (√‘2) < (√‘4)
67 2pos 12348 . . . . . . . . . . 11 0 < 2
6845, 67sqrtpclii 15365 . . . . . . . . . 10 (√‘2) ∈ ℝ
6960, 62sqrtpclii 15365 . . . . . . . . . 10 (√‘4) ∈ ℝ
7068, 69, 45, 67ltdiv1ii 12176 . . . . . . . . 9 ((√‘2) < (√‘4) ↔ ((√‘2) / 2) < ((√‘4) / 2))
7166, 70mpbi 229 . . . . . . . 8 ((√‘2) / 2) < ((√‘4) / 2)
72 sqrtsq 15252 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 0 ≤ 2) → (√‘(2↑2)) = 2)
7345, 47, 72mp2an 690 . . . . . . . . . 10 (√‘(2↑2)) = 2
7473oveq1i 7429 . . . . . . . . 9 ((√‘(2↑2)) / 2) = (2 / 2)
75 sq2 14196 . . . . . . . . . . 11 (2↑2) = 4
7675fveq2i 6899 . . . . . . . . . 10 (√‘(2↑2)) = (√‘4)
7776oveq1i 7429 . . . . . . . . 9 ((√‘(2↑2)) / 2) = ((√‘4) / 2)
78 2div2e1 12386 . . . . . . . . 9 (2 / 2) = 1
7974, 77, 783eqtr3i 2761 . . . . . . . 8 ((√‘4) / 2) = 1
8071, 79breqtri 5174 . . . . . . 7 ((√‘2) / 2) < 1
8146, 48resqrtcld 15400 . . . . . . . . 9 (𝐷 ∈ ℝ+ → (√‘2) ∈ ℝ)
8281rehalfcld 12492 . . . . . . . 8 (𝐷 ∈ ℝ+ → ((√‘2) / 2) ∈ ℝ)
83 1red 11247 . . . . . . . 8 (𝐷 ∈ ℝ+ → 1 ∈ ℝ)
84 id 22 . . . . . . . 8 (𝐷 ∈ ℝ+𝐷 ∈ ℝ+)
8582, 83, 84ltmul1d 13092 . . . . . . 7 (𝐷 ∈ ℝ+ → (((√‘2) / 2) < 1 ↔ (((√‘2) / 2) · 𝐷) < (1 · 𝐷)))
8680, 85mpbii 232 . . . . . 6 (𝐷 ∈ ℝ+ → (((√‘2) / 2) · 𝐷) < (1 · 𝐷))
8753mullidd 11264 . . . . . 6 (𝐷 ∈ ℝ+ → (1 · 𝐷) = 𝐷)
8886, 87breqtrd 5175 . . . . 5 (𝐷 ∈ ℝ+ → (((√‘2) / 2) · 𝐷) < 𝐷)
8958, 88eqbrtrd 5171 . . . 4 (𝐷 ∈ ℝ+ → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) < 𝐷)
9011, 89syl 17 . . 3 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘(((𝐷 / 2)↑2) + ((𝐷 / 2)↑2))) < 𝐷)
9110, 18, 12, 33, 90lttrd 11407 . 2 (((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) ∧ (𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2))) → (√‘((𝑋↑2) + (𝑌↑2))) < 𝐷)
9291ex 411 1 ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) → ((𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2)) → (√‘((𝑋↑2) + (𝑌↑2))) < 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2929   class class class wbr 5149  cfv 6549  (class class class)co 7419  cr 11139  0cc0 11140  1c1 11141   + caddc 11143   · cmul 11145   < clt 11280  cle 11281   / cdiv 11903  2c2 12300  4c4 12302  +crp 13009  cexp 14062  csqrt 15216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9467  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-seq 14003  df-exp 14063  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219
This theorem is referenced by:  sqsscirc2  33641
  Copyright terms: Public domain W3C validator