MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsrngd Structured version   Visualization version   GIF version

Theorem xpsrngd 20197
Description: A product of two non-unital rings is a non-unital ring (xpsmnd 18803 analog). (Contributed by AV, 22-Feb-2025.)
Hypotheses
Ref Expression
xpsrngd.y 𝑌 = (𝑆 ×s 𝑅)
xpsrngd.s (𝜑𝑆 ∈ Rng)
xpsrngd.r (𝜑𝑅 ∈ Rng)
Assertion
Ref Expression
xpsrngd (𝜑𝑌 ∈ Rng)

Proof of Theorem xpsrngd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsrngd.y . . 3 𝑌 = (𝑆 ×s 𝑅)
2 eqid 2735 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2735 . . 3 (Base‘𝑅) = (Base‘𝑅)
4 xpsrngd.s . . 3 (𝜑𝑆 ∈ Rng)
5 xpsrngd.r . . 3 (𝜑𝑅 ∈ Rng)
6 eqid 2735 . . 3 (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
7 eqid 2735 . . 3 (Scalar‘𝑆) = (Scalar‘𝑆)
8 eqid 2735 . . 3 ((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}) = ((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩})
91, 2, 3, 4, 5, 6, 7, 8xpsval 17617 . 2 (𝜑𝑌 = ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩})))
106xpsff1o2 17616 . . . . 5 (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
111, 2, 3, 4, 5, 6, 7, 8xpsrnbas 17618 . . . . . 6 (𝜑 → ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩})))
1211f1oeq3d 6846 . . . . 5 (𝜑 → ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ↔ (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}))))
1310, 12mpbii 233 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩})))
14 f1ocnv 6861 . . . 4 ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩})) → (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}))–1-1-onto→((Base‘𝑆) × (Base‘𝑅)))
15 f1of1 6848 . . . 4 ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}))–1-1-onto→((Base‘𝑆) × (Base‘𝑅)) → (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}))–1-1→((Base‘𝑆) × (Base‘𝑅)))
1613, 14, 153syl 18 . . 3 (𝜑(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}))–1-1→((Base‘𝑆) × (Base‘𝑅)))
17 2on 8519 . . . . 5 2o ∈ On
1817a1i 11 . . . 4 (𝜑 → 2o ∈ On)
19 fvexd 6922 . . . 4 (𝜑 → (Scalar‘𝑆) ∈ V)
20 xpscf 17612 . . . . 5 ({⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}:2o⟶Rng ↔ (𝑆 ∈ Rng ∧ 𝑅 ∈ Rng))
214, 5, 20sylanbrc 583 . . . 4 (𝜑 → {⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}:2o⟶Rng)
228, 18, 19, 21prdsrngd 20194 . . 3 (𝜑 → ((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}) ∈ Rng)
23 eqid 2735 . . . 4 ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩})) = ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}))
24 eqid 2735 . . . 4 (Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩})) = (Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}))
2523, 24imasrngf1 20196 . . 3 (((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}))–1-1→((Base‘𝑆) × (Base‘𝑅)) ∧ ((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩}) ∈ Rng) → ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩})) ∈ Rng)
2616, 22, 25syl2anc 584 . 2 (𝜑 → ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑆)Xs{⟨∅, 𝑆⟩, ⟨1o, 𝑅⟩})) ∈ Rng)
279, 26eqeltrd 2839 1 (𝜑𝑌 ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  c0 4339  {cpr 4633  cop 4637   × cxp 5687  ccnv 5688  ran crn 5690  Oncon0 6386  wf 6559  1-1wf1 6560  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cmpo 7433  1oc1o 8498  2oc2o 8499  Basecbs 17245  Scalarcsca 17301  Xscprds 17492  s cimas 17551   ×s cxps 17553  Rngcrng 20170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-imas 17555  df-xps 17557  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171
This theorem is referenced by:  rngqiprng  21324  pzriprnglem1  21510
  Copyright terms: Public domain W3C validator