![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsrngd | Structured version Visualization version GIF version |
Description: A product of two non-unital rings is a non-unital ring (xpsmnd 18812 analog). (Contributed by AV, 22-Feb-2025.) |
Ref | Expression |
---|---|
xpsrngd.y | ⊢ 𝑌 = (𝑆 ×s 𝑅) |
xpsrngd.s | ⊢ (𝜑 → 𝑆 ∈ Rng) |
xpsrngd.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
Ref | Expression |
---|---|
xpsrngd | ⊢ (𝜑 → 𝑌 ∈ Rng) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsrngd.y | . . 3 ⊢ 𝑌 = (𝑆 ×s 𝑅) | |
2 | eqid 2740 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
3 | eqid 2740 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
4 | xpsrngd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ Rng) | |
5 | xpsrngd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
6 | eqid 2740 | . . 3 ⊢ (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
7 | eqid 2740 | . . 3 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
8 | eqid 2740 | . . 3 ⊢ ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) = ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 17630 | . 2 ⊢ (𝜑 → 𝑌 = (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))) |
10 | 6 | xpsff1o2 17629 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
11 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsrnbas 17631 | . . . . . 6 ⊢ (𝜑 → ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))) |
12 | 11 | f1oeq3d 6859 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) ↔ (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})))) |
13 | 10, 12 | mpbii 233 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))) |
14 | f1ocnv 6874 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) → ◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1-onto→((Base‘𝑆) × (Base‘𝑅))) | |
15 | f1of1 6861 | . . . 4 ⊢ (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1-onto→((Base‘𝑆) × (Base‘𝑅)) → ◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1→((Base‘𝑆) × (Base‘𝑅))) | |
16 | 13, 14, 15 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1→((Base‘𝑆) × (Base‘𝑅))) |
17 | 2on 8536 | . . . . 5 ⊢ 2o ∈ On | |
18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → 2o ∈ On) |
19 | fvexd 6935 | . . . 4 ⊢ (𝜑 → (Scalar‘𝑆) ∈ V) | |
20 | xpscf 17625 | . . . . 5 ⊢ ({〈∅, 𝑆〉, 〈1o, 𝑅〉}:2o⟶Rng ↔ (𝑆 ∈ Rng ∧ 𝑅 ∈ Rng)) | |
21 | 4, 5, 20 | sylanbrc 582 | . . . 4 ⊢ (𝜑 → {〈∅, 𝑆〉, 〈1o, 𝑅〉}:2o⟶Rng) |
22 | 8, 18, 19, 21 | prdsrngd 20203 | . . 3 ⊢ (𝜑 → ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) ∈ Rng) |
23 | eqid 2740 | . . . 4 ⊢ (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) = (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) | |
24 | eqid 2740 | . . . 4 ⊢ (Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) = (Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) | |
25 | 23, 24 | imasrngf1 20205 | . . 3 ⊢ ((◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1→((Base‘𝑆) × (Base‘𝑅)) ∧ ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) ∈ Rng) → (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) ∈ Rng) |
26 | 16, 22, 25 | syl2anc 583 | . 2 ⊢ (𝜑 → (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) ∈ Rng) |
27 | 9, 26 | eqeltrd 2844 | 1 ⊢ (𝜑 → 𝑌 ∈ Rng) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {cpr 4650 〈cop 4654 × cxp 5698 ◡ccnv 5699 ran crn 5701 Oncon0 6395 ⟶wf 6569 –1-1→wf1 6570 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 1oc1o 8515 2oc2o 8516 Basecbs 17258 Scalarcsca 17314 Xscprds 17505 “s cimas 17564 ×s cxps 17566 Rngcrng 20179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-prds 17507 df-imas 17568 df-xps 17570 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 |
This theorem is referenced by: rngqiprng 21329 pzriprnglem1 21515 |
Copyright terms: Public domain | W3C validator |