Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpsdsfn | Structured version Visualization version GIF version |
Description: Closure of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xpsds.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
xpsds.x | ⊢ 𝑋 = (Base‘𝑅) |
xpsds.y | ⊢ 𝑌 = (Base‘𝑆) |
xpsds.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
xpsds.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
xpsds.p | ⊢ 𝑃 = (dist‘𝑇) |
Ref | Expression |
---|---|
xpsdsfn | ⊢ (𝜑 → 𝑃 Fn ((𝑋 × 𝑌) × (𝑋 × 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsds.t | . . 3 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
2 | xpsds.x | . . 3 ⊢ 𝑋 = (Base‘𝑅) | |
3 | xpsds.y | . . 3 ⊢ 𝑌 = (Base‘𝑆) | |
4 | xpsds.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
5 | xpsds.2 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
6 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
7 | eqid 2738 | . . 3 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
8 | eqid 2738 | . . 3 ⊢ ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) = ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 16948 | . 2 ⊢ (𝜑 → 𝑇 = (◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsrnbas 16949 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) |
11 | 6 | xpsff1o2 16947 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})) |
13 | f1ocnv 6632 | . . 3 ⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–1-1-onto→(𝑋 × 𝑌)) | |
14 | f1ofo 6627 | . . 3 ⊢ (◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–1-1-onto→(𝑋 × 𝑌) → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–onto→(𝑋 × 𝑌)) | |
15 | 12, 13, 14 | 3syl 18 | . 2 ⊢ (𝜑 → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–onto→(𝑋 × 𝑌)) |
16 | ovexd 7207 | . 2 ⊢ (𝜑 → ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) ∈ V) | |
17 | eqid 2738 | . 2 ⊢ (dist‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) = (dist‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) | |
18 | xpsds.p | . 2 ⊢ 𝑃 = (dist‘𝑇) | |
19 | 9, 10, 15, 16, 17, 18 | imasdsfn 16892 | 1 ⊢ (𝜑 → 𝑃 Fn ((𝑋 × 𝑌) × (𝑋 × 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 Vcvv 3398 ∅c0 4211 {cpr 4518 〈cop 4522 × cxp 5523 ◡ccnv 5524 ran crn 5526 Fn wfn 6334 –onto→wfo 6337 –1-1-onto→wf1o 6338 ‘cfv 6339 (class class class)co 7172 ∈ cmpo 7174 1oc1o 8126 Basecbs 16588 Scalarcsca 16673 distcds 16679 Xscprds 16824 ×s cxps 16884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-cnex 10673 ax-resscn 10674 ax-1cn 10675 ax-icn 10676 ax-addcl 10677 ax-addrcl 10678 ax-mulcl 10679 ax-mulrcl 10680 ax-mulcom 10681 ax-addass 10682 ax-mulass 10683 ax-distr 10684 ax-i2m1 10685 ax-1ne0 10686 ax-1rid 10687 ax-rnegex 10688 ax-rrecex 10689 ax-cnre 10690 ax-pre-lttri 10691 ax-pre-lttrn 10692 ax-pre-ltadd 10693 ax-pre-mulgt0 10694 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7129 df-ov 7175 df-oprab 7176 df-mpo 7177 df-om 7602 df-1st 7716 df-2nd 7717 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-1o 8133 df-2o 8134 df-er 8322 df-map 8441 df-ixp 8510 df-en 8558 df-dom 8559 df-sdom 8560 df-fin 8561 df-sup 8981 df-inf 8982 df-pnf 10757 df-mnf 10758 df-xr 10759 df-ltxr 10760 df-le 10761 df-sub 10952 df-neg 10953 df-nn 11719 df-2 11781 df-3 11782 df-4 11783 df-5 11784 df-6 11785 df-7 11786 df-8 11787 df-9 11788 df-n0 11979 df-z 12065 df-dec 12182 df-uz 12327 df-fz 12984 df-struct 16590 df-ndx 16591 df-slot 16592 df-base 16594 df-plusg 16683 df-mulr 16684 df-sca 16686 df-vsca 16687 df-ip 16688 df-tset 16689 df-ple 16690 df-ds 16692 df-hom 16694 df-cco 16695 df-prds 16826 df-imas 16886 df-xps 16888 |
This theorem is referenced by: xpsdsfn2 23133 |
Copyright terms: Public domain | W3C validator |