![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsdsfn | Structured version Visualization version GIF version |
Description: Closure of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xpsds.t | β’ π = (π Γs π) |
xpsds.x | β’ π = (Baseβπ ) |
xpsds.y | β’ π = (Baseβπ) |
xpsds.1 | β’ (π β π β π) |
xpsds.2 | β’ (π β π β π) |
xpsds.p | β’ π = (distβπ) |
Ref | Expression |
---|---|
xpsdsfn | β’ (π β π Fn ((π Γ π) Γ (π Γ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsds.t | . . 3 β’ π = (π Γs π) | |
2 | xpsds.x | . . 3 β’ π = (Baseβπ ) | |
3 | xpsds.y | . . 3 β’ π = (Baseβπ) | |
4 | xpsds.1 | . . 3 β’ (π β π β π) | |
5 | xpsds.2 | . . 3 β’ (π β π β π) | |
6 | eqid 2733 | . . 3 β’ (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}) = (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}) | |
7 | eqid 2733 | . . 3 β’ (Scalarβπ ) = (Scalarβπ ) | |
8 | eqid 2733 | . . 3 β’ ((Scalarβπ )Xs{β¨β , π β©, β¨1o, πβ©}) = ((Scalarβπ )Xs{β¨β , π β©, β¨1o, πβ©}) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 17516 | . 2 β’ (π β π = (β‘(π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}) βs ((Scalarβπ )Xs{β¨β , π β©, β¨1o, πβ©}))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsrnbas 17517 | . 2 β’ (π β ran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}) = (Baseβ((Scalarβπ )Xs{β¨β , π β©, β¨1o, πβ©}))) |
11 | 6 | xpsff1o2 17515 | . . . 4 β’ (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):(π Γ π)β1-1-ontoβran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}) |
12 | 11 | a1i 11 | . . 3 β’ (π β (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):(π Γ π)β1-1-ontoβran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©})) |
13 | f1ocnv 6846 | . . 3 β’ ((π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):(π Γ π)β1-1-ontoβran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}) β β‘(π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©})β1-1-ontoβ(π Γ π)) | |
14 | f1ofo 6841 | . . 3 β’ (β‘(π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©})β1-1-ontoβ(π Γ π) β β‘(π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©})βontoβ(π Γ π)) | |
15 | 12, 13, 14 | 3syl 18 | . 2 β’ (π β β‘(π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©})βontoβ(π Γ π)) |
16 | ovexd 7444 | . 2 β’ (π β ((Scalarβπ )Xs{β¨β , π β©, β¨1o, πβ©}) β V) | |
17 | eqid 2733 | . 2 β’ (distβ((Scalarβπ )Xs{β¨β , π β©, β¨1o, πβ©})) = (distβ((Scalarβπ )Xs{β¨β , π β©, β¨1o, πβ©})) | |
18 | xpsds.p | . 2 β’ π = (distβπ) | |
19 | 9, 10, 15, 16, 17, 18 | imasdsfn 17460 | 1 β’ (π β π Fn ((π Γ π) Γ (π Γ π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 Vcvv 3475 β c0 4323 {cpr 4631 β¨cop 4635 Γ cxp 5675 β‘ccnv 5676 ran crn 5678 Fn wfn 6539 βontoβwfo 6542 β1-1-ontoβwf1o 6543 βcfv 6544 (class class class)co 7409 β cmpo 7411 1oc1o 8459 Basecbs 17144 Scalarcsca 17200 distcds 17206 Xscprds 17391 Γs cxps 17452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-map 8822 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-hom 17221 df-cco 17222 df-prds 17393 df-imas 17454 df-xps 17456 |
This theorem is referenced by: xpsdsfn2 23884 |
Copyright terms: Public domain | W3C validator |