MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsmnd Structured version   Visualization version   GIF version

Theorem xpsmnd 17939
Description: The binary product of monoids is a monoid. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypothesis
Ref Expression
xpsmnd.t 𝑇 = (𝑅 ×s 𝑆)
Assertion
Ref Expression
xpsmnd ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑇 ∈ Mnd)

Proof of Theorem xpsmnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsmnd.t . . 3 𝑇 = (𝑅 ×s 𝑆)
2 eqid 2826 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2826 . . 3 (Base‘𝑆) = (Base‘𝑆)
4 simpl 483 . . 3 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑅 ∈ Mnd)
5 simpr 485 . . 3 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑆 ∈ Mnd)
6 eqid 2826 . . 3 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
7 eqid 2826 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
8 eqid 2826 . . 3 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
91, 2, 3, 4, 5, 6, 7, 8xpsval 16833 . 2 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑇 = ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
106xpsff1o2 16832 . . . . 5 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
111, 2, 3, 4, 5, 6, 7, 8xpsrnbas 16834 . . . . . 6 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
1211f1oeq3d 6609 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ↔ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→(Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))))
1310, 12mpbii 234 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→(Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
14 f1ocnv 6624 . . . 4 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→(Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆)))
15 f1of1 6611 . . . 4 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆)) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))–1-1→((Base‘𝑅) × (Base‘𝑆)))
1613, 14, 153syl 18 . . 3 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))–1-1→((Base‘𝑅) × (Base‘𝑆)))
17 2on 8102 . . . . 5 2o ∈ On
1817a1i 11 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 2o ∈ On)
19 fvexd 6682 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (Scalar‘𝑅) ∈ V)
20 xpscf 16828 . . . . 5 ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶Mnd ↔ (𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd))
2120biimpri 229 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶Mnd)
228, 18, 19, 21prdsmndd 17932 . . 3 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ Mnd)
23 eqid 2826 . . . 4 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
24 eqid 2826 . . . 4 (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
2523, 24imasmndf1 17938 . . 3 (((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))–1-1→((Base‘𝑅) × (Base‘𝑆)) ∧ ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ Mnd) → ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∈ Mnd)
2616, 22, 25syl2anc 584 . 2 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∈ Mnd)
279, 26eqeltrd 2918 1 ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑇 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  Vcvv 3500  c0 4295  {cpr 4566  cop 4570   × cxp 5552  ccnv 5553  ran crn 5555  Oncon0 6189  wf 6348  1-1wf1 6349  1-1-ontowf1o 6351  cfv 6352  (class class class)co 7148  cmpo 7150  1oc1o 8086  2oc2o 8087  Basecbs 16473  Scalarcsca 16558  Xscprds 16709  s cimas 16767   ×s cxps 16769  Mndcmnd 17900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-inf 8896  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-fz 12883  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-plusg 16568  df-mulr 16569  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-hom 16579  df-cco 16580  df-0g 16705  df-prds 16711  df-imas 16771  df-xps 16773  df-mgm 17842  df-sgrp 17890  df-mnd 17901
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator