| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | xpsmnd.t | . . 3
⊢ 𝑇 = (𝑅 ×s 𝑆) | 
| 2 |  | eqid 2737 | . . 3
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 3 |  | eqid 2737 | . . 3
⊢
(Base‘𝑆) =
(Base‘𝑆) | 
| 4 |  | simpl 482 | . . 3
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑅 ∈ Mnd) | 
| 5 |  | simpr 484 | . . 3
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑆 ∈ Mnd) | 
| 6 |  | eqid 2737 | . . 3
⊢ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | 
| 7 |  | eqid 2737 | . . 3
⊢
(Scalar‘𝑅) =
(Scalar‘𝑅) | 
| 8 |  | eqid 2737 | . . 3
⊢
((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) = ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) | 
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 17615 | . 2
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑇 = (◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})
“s ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) | 
| 10 | 6 | xpsff1o2 17614 | . . . . 5
⊢ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran
(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | 
| 11 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsrnbas 17616 | . . . . . 6
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) =
(Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) | 
| 12 | 11 | f1oeq3d 6845 | . . . . 5
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran
(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) ↔ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→(Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})))) | 
| 13 | 10, 12 | mpbii 233 | . . . 4
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→(Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) | 
| 14 |  | f1ocnv 6860 | . . . 4
⊢ ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→(Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆))) | 
| 15 |  | f1of1 6847 | . . . 4
⊢ (◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆)) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))–1-1→((Base‘𝑅) × (Base‘𝑆))) | 
| 16 | 13, 14, 15 | 3syl 18 | . . 3
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))–1-1→((Base‘𝑅) × (Base‘𝑆))) | 
| 17 |  | 2on 8520 | . . . . 5
⊢
2o ∈ On | 
| 18 | 17 | a1i 11 | . . . 4
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) →
2o ∈ On) | 
| 19 |  | fvexd 6921 | . . . 4
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) →
(Scalar‘𝑅) ∈
V) | 
| 20 |  | xpscf 17610 | . . . . 5
⊢
({〈∅, 𝑅〉, 〈1o, 𝑆〉}:2o⟶Mnd
↔ (𝑅 ∈ Mnd ∧
𝑆 ∈
Mnd)) | 
| 21 | 20 | biimpri 228 | . . . 4
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) →
{〈∅, 𝑅〉,
〈1o, 𝑆〉}:2o⟶Mnd) | 
| 22 | 8, 18, 19, 21 | prdsmndd 18783 | . . 3
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) →
((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o,
𝑆〉}) ∈
Mnd) | 
| 23 |  | eqid 2737 | . . . 4
⊢ (◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})
“s ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) = (◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})
“s ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) | 
| 24 |  | eqid 2737 | . . . 4
⊢
(Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) =
(Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) | 
| 25 | 23, 24 | imasmndf1 18789 | . . 3
⊢ ((◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))–1-1→((Base‘𝑅) × (Base‘𝑆)) ∧ ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) ∈ Mnd) →
(◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})
“s ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) ∈
Mnd) | 
| 26 | 16, 22, 25 | syl2anc 584 | . 2
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → (◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})
“s ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) ∈
Mnd) | 
| 27 | 9, 26 | eqeltrd 2841 | 1
⊢ ((𝑅 ∈ Mnd ∧ 𝑆 ∈ Mnd) → 𝑇 ∈ Mnd) |