![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpstps | Structured version Visualization version GIF version |
Description: A binary product of topologies is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.) |
Ref | Expression |
---|---|
xpstps.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
Ref | Expression |
---|---|
xpstps | ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 ∈ TopSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpstps.t | . . 3 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
2 | eqid 2725 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2725 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
4 | simpl 481 | . . 3 ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑅 ∈ TopSp) | |
5 | simpr 483 | . . 3 ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑆 ∈ TopSp) | |
6 | eqid 2725 | . . 3 ⊢ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
7 | eqid 2725 | . . 3 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
8 | eqid 2725 | . . 3 ⊢ ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) = ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 17555 | . 2 ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 = (◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsrnbas 17556 | . 2 ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) |
11 | 6 | xpsff1o2 17554 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
12 | 11 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})) |
13 | f1ocnv 6850 | . . 3 ⊢ ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–1-1-onto→((Base‘𝑅) × (Base‘𝑆))) | |
14 | f1ofo 6845 | . . 3 ⊢ (◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–1-1-onto→((Base‘𝑅) × (Base‘𝑆)) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–onto→((Base‘𝑅) × (Base‘𝑆))) | |
15 | 12, 13, 14 | 3syl 18 | . 2 ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–onto→((Base‘𝑅) × (Base‘𝑆))) |
16 | fvexd 6911 | . . 3 ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (Scalar‘𝑅) ∈ V) | |
17 | 2on 8501 | . . . 4 ⊢ 2o ∈ On | |
18 | 17 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 2o ∈ On) |
19 | xpscf 17550 | . . . 4 ⊢ ({〈∅, 𝑅〉, 〈1o, 𝑆〉}:2o⟶TopSp ↔ (𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp)) | |
20 | 19 | biimpri 227 | . . 3 ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {〈∅, 𝑅〉, 〈1o, 𝑆〉}:2o⟶TopSp) |
21 | 8, 16, 18, 20 | prdstps 23577 | . 2 ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) ∈ TopSp) |
22 | 9, 10, 15, 21 | imastps 23669 | 1 ⊢ ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 ∈ TopSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ∅c0 4322 {cpr 4632 〈cop 4636 × cxp 5676 ◡ccnv 5677 ran crn 5679 Oncon0 6371 ⟶wf 6545 –onto→wfo 6547 –1-1-onto→wf1o 6548 ‘cfv 6549 (class class class)co 7419 ∈ cmpo 7421 1oc1o 8480 2oc2o 8481 Basecbs 17183 Scalarcsca 17239 Xscprds 17430 ×s cxps 17491 TopSpctps 22878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-er 8725 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9436 df-sup 9467 df-inf 9468 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-struct 17119 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-hom 17260 df-cco 17261 df-rest 17407 df-topn 17408 df-topgen 17428 df-pt 17429 df-prds 17432 df-qtop 17492 df-imas 17493 df-xps 17495 df-top 22840 df-topon 22857 df-topsp 22879 df-bases 22893 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |