MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstps Structured version   Visualization version   GIF version

Theorem xpstps 22869
Description: A binary product of topologies is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypothesis
Ref Expression
xpstps.t 𝑇 = (𝑅 ×s 𝑆)
Assertion
Ref Expression
xpstps ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 ∈ TopSp)

Proof of Theorem xpstps
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpstps.t . . 3 𝑇 = (𝑅 ×s 𝑆)
2 eqid 2738 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2738 . . 3 (Base‘𝑆) = (Base‘𝑆)
4 simpl 482 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑅 ∈ TopSp)
5 simpr 484 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑆 ∈ TopSp)
6 eqid 2738 . . 3 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
7 eqid 2738 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
8 eqid 2738 . . 3 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
91, 2, 3, 4, 5, 6, 7, 8xpsval 17198 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 = ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
101, 2, 3, 4, 5, 6, 7, 8xpsrnbas 17199 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
116xpsff1o2 17197 . . . 4 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
1211a1i 11 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
13 f1ocnv 6712 . . 3 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→((Base‘𝑅) × (Base‘𝑆)))
14 f1ofo 6707 . . 3 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→((Base‘𝑅) × (Base‘𝑆)) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→((Base‘𝑅) × (Base‘𝑆)))
1512, 13, 143syl 18 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→((Base‘𝑅) × (Base‘𝑆)))
16 fvexd 6771 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (Scalar‘𝑅) ∈ V)
17 2on 8275 . . . 4 2o ∈ On
1817a1i 11 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 2o ∈ On)
19 xpscf 17193 . . . 4 ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶TopSp ↔ (𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp))
2019biimpri 227 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶TopSp)
218, 16, 18, 20prdstps 22688 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ TopSp)
229, 10, 15, 21imastps 22780 1 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  {cpr 4560  cop 4564   × cxp 5578  ccnv 5579  ran crn 5581  Oncon0 6251  wf 6414  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cmpo 7257  1oc1o 8260  2oc2o 8261  Basecbs 16840  Scalarcsca 16891  Xscprds 17073   ×s cxps 17134  TopSpctps 21989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-topgen 17071  df-pt 17072  df-prds 17075  df-qtop 17135  df-imas 17136  df-xps 17138  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator