Step | Hyp | Ref
| Expression |
1 | | xpstps.t |
. . 3
β’ π = (π
Γs π) |
2 | | eqid 2732 |
. . 3
β’
(Baseβπ
) =
(Baseβπ
) |
3 | | eqid 2732 |
. . 3
β’
(Baseβπ) =
(Baseβπ) |
4 | | simpl 483 |
. . 3
β’ ((π
β TopSp β§ π β TopSp) β π
β TopSp) |
5 | | simpr 485 |
. . 3
β’ ((π
β TopSp β§ π β TopSp) β π β TopSp) |
6 | | eqid 2732 |
. . 3
β’ (π₯ β (Baseβπ
), π¦ β (Baseβπ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) = (π₯ β (Baseβπ
), π¦ β (Baseβπ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) |
7 | | eqid 2732 |
. . 3
β’
(Scalarβπ
) =
(Scalarβπ
) |
8 | | eqid 2732 |
. . 3
β’
((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}) = ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 17520 |
. 2
β’ ((π
β TopSp β§ π β TopSp) β π = (β‘(π₯ β (Baseβπ
), π¦ β (Baseβπ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©})
βs ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsrnbas 17521 |
. 2
β’ ((π
β TopSp β§ π β TopSp) β ran (π₯ β (Baseβπ
), π¦ β (Baseβπ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) =
(Baseβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}))) |
11 | 6 | xpsff1o2 17519 |
. . . 4
β’ (π₯ β (Baseβπ
), π¦ β (Baseβπ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):((Baseβπ
) Γ (Baseβπ))β1-1-ontoβran
(π₯ β (Baseβπ
), π¦ β (Baseβπ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) |
12 | 11 | a1i 11 |
. . 3
β’ ((π
β TopSp β§ π β TopSp) β (π₯ β (Baseβπ
), π¦ β (Baseβπ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):((Baseβπ
) Γ (Baseβπ))β1-1-ontoβran
(π₯ β (Baseβπ
), π¦ β (Baseβπ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©})) |
13 | | f1ocnv 6845 |
. . 3
β’ ((π₯ β (Baseβπ
), π¦ β (Baseβπ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):((Baseβπ
) Γ (Baseβπ))β1-1-ontoβran
(π₯ β (Baseβπ
), π¦ β (Baseβπ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) β β‘(π₯ β (Baseβπ
), π¦ β (Baseβπ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):ran (π₯ β (Baseβπ
), π¦ β (Baseβπ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©})β1-1-ontoβ((Baseβπ
) Γ (Baseβπ))) |
14 | | f1ofo 6840 |
. . 3
β’ (β‘(π₯ β (Baseβπ
), π¦ β (Baseβπ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):ran (π₯ β (Baseβπ
), π¦ β (Baseβπ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©})β1-1-ontoβ((Baseβπ
) Γ (Baseβπ)) β β‘(π₯ β (Baseβπ
), π¦ β (Baseβπ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):ran (π₯ β (Baseβπ
), π¦ β (Baseβπ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©})βontoβ((Baseβπ
) Γ (Baseβπ))) |
15 | 12, 13, 14 | 3syl 18 |
. 2
β’ ((π
β TopSp β§ π β TopSp) β β‘(π₯ β (Baseβπ
), π¦ β (Baseβπ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):ran (π₯ β (Baseβπ
), π¦ β (Baseβπ) β¦ {β¨β
, π₯β©, β¨1o, π¦β©})βontoβ((Baseβπ
) Γ (Baseβπ))) |
16 | | fvexd 6906 |
. . 3
β’ ((π
β TopSp β§ π β TopSp) β
(Scalarβπ
) β
V) |
17 | | 2on 8482 |
. . . 4
β’
2o β On |
18 | 17 | a1i 11 |
. . 3
β’ ((π
β TopSp β§ π β TopSp) β
2o β On) |
19 | | xpscf 17515 |
. . . 4
β’
({β¨β
, π
β©, β¨1o, πβ©}:2oβΆTopSp β
(π
β TopSp β§ π β TopSp)) |
20 | 19 | biimpri 227 |
. . 3
β’ ((π
β TopSp β§ π β TopSp) β
{β¨β
, π
β©,
β¨1o, πβ©}:2oβΆTopSp) |
21 | 8, 16, 18, 20 | prdstps 23353 |
. 2
β’ ((π
β TopSp β§ π β TopSp) β
((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o,
πβ©}) β
TopSp) |
22 | 9, 10, 15, 21 | imastps 23445 |
1
β’ ((π
β TopSp β§ π β TopSp) β π β TopSp) |