| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsringd | Structured version Visualization version GIF version | ||
| Description: A product of two rings is a ring (xpsmnd 18689 analog). (Contributed by AV, 28-Feb-2025.) |
| Ref | Expression |
|---|---|
| xpsringd.y | ⊢ 𝑌 = (𝑆 ×s 𝑅) |
| xpsringd.s | ⊢ (𝜑 → 𝑆 ∈ Ring) |
| xpsringd.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| xpsringd | ⊢ (𝜑 → 𝑌 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsringd.y | . . 3 ⊢ 𝑌 = (𝑆 ×s 𝑅) | |
| 2 | eqid 2733 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 3 | eqid 2733 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | xpsringd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
| 5 | xpsringd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
| 7 | eqid 2733 | . . 3 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
| 8 | eqid 2733 | . . 3 ⊢ ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) = ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 17478 | . 2 ⊢ (𝜑 → 𝑌 = (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))) |
| 10 | 6 | xpsff1o2 17477 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsrnbas 17479 | . . . . . 6 ⊢ (𝜑 → ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))) |
| 12 | 11 | f1oeq3d 6767 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) ↔ (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})))) |
| 13 | 10, 12 | mpbii 233 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))) |
| 14 | f1ocnv 6782 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) → ◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1-onto→((Base‘𝑆) × (Base‘𝑅))) | |
| 15 | f1of1 6769 | . . . 4 ⊢ (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1-onto→((Base‘𝑆) × (Base‘𝑅)) → ◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1→((Base‘𝑆) × (Base‘𝑅))) | |
| 16 | 13, 14, 15 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1→((Base‘𝑆) × (Base‘𝑅))) |
| 17 | 2on 8406 | . . . . 5 ⊢ 2o ∈ On | |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → 2o ∈ On) |
| 19 | fvexd 6845 | . . . 4 ⊢ (𝜑 → (Scalar‘𝑆) ∈ V) | |
| 20 | xpscf 17473 | . . . . 5 ⊢ ({〈∅, 𝑆〉, 〈1o, 𝑅〉}:2o⟶Ring ↔ (𝑆 ∈ Ring ∧ 𝑅 ∈ Ring)) | |
| 21 | 4, 5, 20 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → {〈∅, 𝑆〉, 〈1o, 𝑅〉}:2o⟶Ring) |
| 22 | 8, 18, 19, 21 | prdsringd 20243 | . . 3 ⊢ (𝜑 → ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) ∈ Ring) |
| 23 | eqid 2733 | . . . 4 ⊢ (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) = (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) | |
| 24 | eqid 2733 | . . . 4 ⊢ (Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) = (Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) | |
| 25 | 23, 24 | imasringf1 20253 | . . 3 ⊢ ((◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1→((Base‘𝑆) × (Base‘𝑅)) ∧ ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) ∈ Ring) → (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) ∈ Ring) |
| 26 | 16, 22, 25 | syl2anc 584 | . 2 ⊢ (𝜑 → (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) ∈ Ring) |
| 27 | 9, 26 | eqeltrd 2833 | 1 ⊢ (𝜑 → 𝑌 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 {cpr 4579 〈cop 4583 × cxp 5619 ◡ccnv 5620 ran crn 5622 Oncon0 6313 ⟶wf 6484 –1-1→wf1 6485 –1-1-onto→wf1o 6487 ‘cfv 6488 (class class class)co 7354 ∈ cmpo 7356 1oc1o 8386 2oc2o 8387 Basecbs 17124 Scalarcsca 17168 Xscprds 17353 “s cimas 17412 ×s cxps 17414 Ringcrg 20155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-fz 13412 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-plusg 17178 df-mulr 17179 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-hom 17189 df-cco 17190 df-0g 17349 df-prds 17355 df-imas 17416 df-xps 17418 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-grp 18853 df-minusg 18854 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 |
| This theorem is referenced by: rngringbdlem2 21248 rngqiprngu 21259 pzriprng 21438 |
| Copyright terms: Public domain | W3C validator |