| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsringd | Structured version Visualization version GIF version | ||
| Description: A product of two rings is a ring (xpsmnd 18755 analog). (Contributed by AV, 28-Feb-2025.) |
| Ref | Expression |
|---|---|
| xpsringd.y | ⊢ 𝑌 = (𝑆 ×s 𝑅) |
| xpsringd.s | ⊢ (𝜑 → 𝑆 ∈ Ring) |
| xpsringd.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| xpsringd | ⊢ (𝜑 → 𝑌 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsringd.y | . . 3 ⊢ 𝑌 = (𝑆 ×s 𝑅) | |
| 2 | eqid 2735 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 3 | eqid 2735 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | xpsringd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
| 5 | xpsringd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | eqid 2735 | . . 3 ⊢ (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
| 7 | eqid 2735 | . . 3 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
| 8 | eqid 2735 | . . 3 ⊢ ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) = ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 17584 | . 2 ⊢ (𝜑 → 𝑌 = (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))) |
| 10 | 6 | xpsff1o2 17583 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsrnbas 17585 | . . . . . 6 ⊢ (𝜑 → ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))) |
| 12 | 11 | f1oeq3d 6815 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) ↔ (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})))) |
| 13 | 10, 12 | mpbii 233 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))) |
| 14 | f1ocnv 6830 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) → ◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1-onto→((Base‘𝑆) × (Base‘𝑅))) | |
| 15 | f1of1 6817 | . . . 4 ⊢ (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1-onto→((Base‘𝑆) × (Base‘𝑅)) → ◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1→((Base‘𝑆) × (Base‘𝑅))) | |
| 16 | 13, 14, 15 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1→((Base‘𝑆) × (Base‘𝑅))) |
| 17 | 2on 8494 | . . . . 5 ⊢ 2o ∈ On | |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → 2o ∈ On) |
| 19 | fvexd 6891 | . . . 4 ⊢ (𝜑 → (Scalar‘𝑆) ∈ V) | |
| 20 | xpscf 17579 | . . . . 5 ⊢ ({〈∅, 𝑆〉, 〈1o, 𝑅〉}:2o⟶Ring ↔ (𝑆 ∈ Ring ∧ 𝑅 ∈ Ring)) | |
| 21 | 4, 5, 20 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → {〈∅, 𝑆〉, 〈1o, 𝑅〉}:2o⟶Ring) |
| 22 | 8, 18, 19, 21 | prdsringd 20281 | . . 3 ⊢ (𝜑 → ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) ∈ Ring) |
| 23 | eqid 2735 | . . . 4 ⊢ (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) = (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) | |
| 24 | eqid 2735 | . . . 4 ⊢ (Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) = (Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) | |
| 25 | 23, 24 | imasringf1 20291 | . . 3 ⊢ ((◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1→((Base‘𝑆) × (Base‘𝑅)) ∧ ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) ∈ Ring) → (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) ∈ Ring) |
| 26 | 16, 22, 25 | syl2anc 584 | . 2 ⊢ (𝜑 → (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) ∈ Ring) |
| 27 | 9, 26 | eqeltrd 2834 | 1 ⊢ (𝜑 → 𝑌 ∈ Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 {cpr 4603 〈cop 4607 × cxp 5652 ◡ccnv 5653 ran crn 5655 Oncon0 6352 ⟶wf 6527 –1-1→wf1 6528 –1-1-onto→wf1o 6530 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 1oc1o 8473 2oc2o 8474 Basecbs 17228 Scalarcsca 17274 Xscprds 17459 “s cimas 17518 ×s cxps 17520 Ringcrg 20193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-0g 17455 df-prds 17461 df-imas 17522 df-xps 17524 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 |
| This theorem is referenced by: rngringbdlem2 21268 rngqiprngu 21279 pzriprng 21458 |
| Copyright terms: Public domain | W3C validator |