|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > xpsringd | Structured version Visualization version GIF version | ||
| Description: A product of two rings is a ring (xpsmnd 18790 analog). (Contributed by AV, 28-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| xpsringd.y | ⊢ 𝑌 = (𝑆 ×s 𝑅) | 
| xpsringd.s | ⊢ (𝜑 → 𝑆 ∈ Ring) | 
| xpsringd.r | ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| Ref | Expression | 
|---|---|
| xpsringd | ⊢ (𝜑 → 𝑌 ∈ Ring) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xpsringd.y | . . 3 ⊢ 𝑌 = (𝑆 ×s 𝑅) | |
| 2 | eqid 2737 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 3 | eqid 2737 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 4 | xpsringd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
| 5 | xpsringd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 6 | eqid 2737 | . . 3 ⊢ (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
| 7 | eqid 2737 | . . 3 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
| 8 | eqid 2737 | . . 3 ⊢ ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) = ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 17615 | . 2 ⊢ (𝜑 → 𝑌 = (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))) | 
| 10 | 6 | xpsff1o2 17614 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | 
| 11 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsrnbas 17616 | . . . . . 6 ⊢ (𝜑 → ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))) | 
| 12 | 11 | f1oeq3d 6845 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→ran (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) ↔ (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})))) | 
| 13 | 10, 12 | mpbii 233 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))) | 
| 14 | f1ocnv 6860 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑆) × (Base‘𝑅))–1-1-onto→(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) → ◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1-onto→((Base‘𝑆) × (Base‘𝑅))) | |
| 15 | f1of1 6847 | . . . 4 ⊢ (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1-onto→((Base‘𝑆) × (Base‘𝑅)) → ◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1→((Base‘𝑆) × (Base‘𝑅))) | |
| 16 | 13, 14, 15 | 3syl 18 | . . 3 ⊢ (𝜑 → ◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1→((Base‘𝑆) × (Base‘𝑅))) | 
| 17 | 2on 8520 | . . . . 5 ⊢ 2o ∈ On | |
| 18 | 17 | a1i 11 | . . . 4 ⊢ (𝜑 → 2o ∈ On) | 
| 19 | fvexd 6921 | . . . 4 ⊢ (𝜑 → (Scalar‘𝑆) ∈ V) | |
| 20 | xpscf 17610 | . . . . 5 ⊢ ({〈∅, 𝑆〉, 〈1o, 𝑅〉}:2o⟶Ring ↔ (𝑆 ∈ Ring ∧ 𝑅 ∈ Ring)) | |
| 21 | 4, 5, 20 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → {〈∅, 𝑆〉, 〈1o, 𝑅〉}:2o⟶Ring) | 
| 22 | 8, 18, 19, 21 | prdsringd 20318 | . . 3 ⊢ (𝜑 → ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) ∈ Ring) | 
| 23 | eqid 2737 | . . . 4 ⊢ (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) = (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) | |
| 24 | eqid 2737 | . . . 4 ⊢ (Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) = (Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) | |
| 25 | 23, 24 | imasringf1 20328 | . . 3 ⊢ ((◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(Base‘((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}))–1-1→((Base‘𝑆) × (Base‘𝑅)) ∧ ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉}) ∈ Ring) → (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) ∈ Ring) | 
| 26 | 16, 22, 25 | syl2anc 584 | . 2 ⊢ (𝜑 → (◡(𝑥 ∈ (Base‘𝑆), 𝑦 ∈ (Base‘𝑅) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑆)Xs{〈∅, 𝑆〉, 〈1o, 𝑅〉})) ∈ Ring) | 
| 27 | 9, 26 | eqeltrd 2841 | 1 ⊢ (𝜑 → 𝑌 ∈ Ring) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∅c0 4333 {cpr 4628 〈cop 4632 × cxp 5683 ◡ccnv 5684 ran crn 5686 Oncon0 6384 ⟶wf 6557 –1-1→wf1 6558 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 1oc1o 8499 2oc2o 8500 Basecbs 17247 Scalarcsca 17300 Xscprds 17490 “s cimas 17549 ×s cxps 17551 Ringcrg 20230 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17486 df-prds 17492 df-imas 17553 df-xps 17555 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-minusg 18955 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 | 
| This theorem is referenced by: rngringbdlem2 21317 rngqiprngu 21328 pzriprng 21508 | 
| Copyright terms: Public domain | W3C validator |