Step | Hyp | Ref
| Expression |
1 | | xpsringd.y |
. . 3
β’ π = (π Γs π
) |
2 | | eqid 2733 |
. . 3
β’
(Baseβπ) =
(Baseβπ) |
3 | | eqid 2733 |
. . 3
β’
(Baseβπ
) =
(Baseβπ
) |
4 | | xpsringd.s |
. . 3
β’ (π β π β Ring) |
5 | | xpsringd.r |
. . 3
β’ (π β π
β Ring) |
6 | | eqid 2733 |
. . 3
β’ (π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) = (π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) |
7 | | eqid 2733 |
. . 3
β’
(Scalarβπ) =
(Scalarβπ) |
8 | | eqid 2733 |
. . 3
β’
((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©}) = ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©}) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 17516 |
. 2
β’ (π β π = (β‘(π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©})
βs ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©}))) |
10 | 6 | xpsff1o2 17515 |
. . . . 5
β’ (π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):((Baseβπ) Γ (Baseβπ
))β1-1-ontoβran
(π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) |
11 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsrnbas 17517 |
. . . . . 6
β’ (π β ran (π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) =
(Baseβ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©}))) |
12 | 11 | f1oeq3d 6831 |
. . . . 5
β’ (π β ((π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):((Baseβπ) Γ (Baseβπ
))β1-1-ontoβran
(π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) β (π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):((Baseβπ) Γ (Baseβπ
))β1-1-ontoβ(Baseβ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©})))) |
13 | 10, 12 | mpbii 232 |
. . . 4
β’ (π β (π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):((Baseβπ) Γ (Baseβπ
))β1-1-ontoβ(Baseβ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©}))) |
14 | | f1ocnv 6846 |
. . . 4
β’ ((π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):((Baseβπ) Γ (Baseβπ
))β1-1-ontoβ(Baseβ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©})) β β‘(π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):(Baseβ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©}))β1-1-ontoβ((Baseβπ) Γ (Baseβπ
))) |
15 | | f1of1 6833 |
. . . 4
β’ (β‘(π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):(Baseβ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©}))β1-1-ontoβ((Baseβπ) Γ (Baseβπ
)) β β‘(π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):(Baseβ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©}))β1-1β((Baseβπ) Γ (Baseβπ
))) |
16 | 13, 14, 15 | 3syl 18 |
. . 3
β’ (π β β‘(π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):(Baseβ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©}))β1-1β((Baseβπ) Γ (Baseβπ
))) |
17 | | 2on 8480 |
. . . . 5
β’
2o β On |
18 | 17 | a1i 11 |
. . . 4
β’ (π β 2o β
On) |
19 | | fvexd 6907 |
. . . 4
β’ (π β (Scalarβπ) β V) |
20 | | xpscf 17511 |
. . . . 5
β’
({β¨β
, πβ©, β¨1o, π
β©}:2oβΆRing β
(π β Ring β§ π
β Ring)) |
21 | 4, 5, 20 | sylanbrc 584 |
. . . 4
β’ (π β {β¨β
, πβ©, β¨1o,
π
β©}:2oβΆRing) |
22 | 8, 18, 19, 21 | prdsringd 20134 |
. . 3
β’ (π β ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©}) β
Ring) |
23 | | eqid 2733 |
. . . 4
β’ (β‘(π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©})
βs ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©})) = (β‘(π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©})
βs ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©})) |
24 | | eqid 2733 |
. . . 4
β’
(Baseβ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©})) =
(Baseβ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©})) |
25 | 23, 24 | imasringf1 20144 |
. . 3
β’ ((β‘(π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):(Baseβ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©}))β1-1β((Baseβπ) Γ (Baseβπ
)) β§ ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©}) β Ring) β
(β‘(π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©})
βs ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©})) β
Ring) |
26 | 16, 22, 25 | syl2anc 585 |
. 2
β’ (π β (β‘(π₯ β (Baseβπ), π¦ β (Baseβπ
) β¦ {β¨β
, π₯β©, β¨1o, π¦β©})
βs ((Scalarβπ)Xs{β¨β
, πβ©, β¨1o, π
β©})) β
Ring) |
27 | 9, 26 | eqeltrd 2834 |
1
β’ (π β π β Ring) |