MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsff1o2 Structured version   Visualization version   GIF version

Theorem xpsff1o2 17532
Description: The function appearing in xpsval 17533 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2o = {∅, 1o}. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
xpsff1o.f 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
Assertion
Ref Expression
xpsff1o2 𝐹:(𝐴 × 𝐵)–1-1-onto→ran 𝐹
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xpsff1o2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 xpsff1o.f . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
21xpsff1o 17530 . 2 𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
3 f1of1 6799 . 2 (𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → 𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵))
4 f1f1orn 6811 . 2 (𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → 𝐹:(𝐴 × 𝐵)–1-1-onto→ran 𝐹)
52, 3, 4mp2b 10 1 𝐹:(𝐴 × 𝐵)–1-1-onto→ran 𝐹
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  c0 4296  ifcif 4488  {cpr 4591  cop 4595   × cxp 5636  ran crn 5639  1-1wf1 6508  1-1-ontowf1o 6510  cmpo 7389  1oc1o 8427  2oc2o 8428  Xcixp 8870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-2o 8435  df-ixp 8871  df-en 8919  df-fin 8922
This theorem is referenced by:  xpsbas  17535  xpsaddlem  17536  xpsadd  17537  xpsmul  17538  xpssca  17539  xpsvsca  17540  xpsless  17541  xpsle  17542  xpsmnd  18704  xpsgrp  18991  xpsrngd  20088  xpsringd  20241  xpstps  23697  xpstopnlem2  23698  xpsdsfn  24265  xpsxmet  24268  xpsdsval  24269  xpsmet  24270  xpsxms  24422  xpsms  24423
  Copyright terms: Public domain W3C validator