MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsff1o2 Structured version   Visualization version   GIF version

Theorem xpsff1o2 16546
Description: The function appearing in xpsval 16547 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2𝑜 = {∅, 1𝑜}. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
xpsff1o.f 𝐹 = (𝑥𝐴, 𝑦𝐵({𝑥} +𝑐 {𝑦}))
Assertion
Ref Expression
xpsff1o2 𝐹:(𝐴 × 𝐵)–1-1-onto→ran 𝐹
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xpsff1o2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 xpsff1o.f . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵({𝑥} +𝑐 {𝑦}))
21xpsff1o 16543 . 2 𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵)
3 f1of1 6355 . 2 (𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) → 𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵))
4 f1f1orn 6367 . 2 (𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2𝑜 if(𝑘 = ∅, 𝐴, 𝐵) → 𝐹:(𝐴 × 𝐵)–1-1-onto→ran 𝐹)
52, 3, 4mp2b 10 1 𝐹:(𝐴 × 𝐵)–1-1-onto→ran 𝐹
Colors of variables: wff setvar class
Syntax hints:   = wceq 1653  c0 4115  ifcif 4277  {csn 4368   × cxp 5310  ccnv 5311  ran crn 5313  1-1wf1 6098  1-1-ontowf1o 6100  (class class class)co 6878  cmpt2 6880  2𝑜c2o 7793  Xcixp 8148   +𝑐 ccda 9277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-cda 9278
This theorem is referenced by:  xpsbas  16549  xpsaddlem  16550  xpsadd  16551  xpsmul  16552  xpssca  16553  xpsvsca  16554  xpsless  16555  xpsle  16556  xpsmnd  17645  xpsgrp  17850  xpstps  21942  xpstopnlem2  21943  xpsdsfn  22510  xpsxmet  22513  xpsdsval  22514  xpsmet  22515  xpsxms  22667  xpsms  22668
  Copyright terms: Public domain W3C validator