![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsff1o2 | Structured version Visualization version GIF version |
Description: The function appearing in xpsval 17512 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2o = {β , 1o}. (Contributed by Mario Carneiro, 24-Jan-2015.) |
Ref | Expression |
---|---|
xpsff1o.f | β’ πΉ = (π₯ β π΄, π¦ β π΅ β¦ {β¨β , π₯β©, β¨1o, π¦β©}) |
Ref | Expression |
---|---|
xpsff1o2 | β’ πΉ:(π΄ Γ π΅)β1-1-ontoβran πΉ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsff1o.f | . . 3 β’ πΉ = (π₯ β π΄, π¦ β π΅ β¦ {β¨β , π₯β©, β¨1o, π¦β©}) | |
2 | 1 | xpsff1o 17509 | . 2 β’ πΉ:(π΄ Γ π΅)β1-1-ontoβXπ β 2o if(π = β , π΄, π΅) |
3 | f1of1 6822 | . 2 β’ (πΉ:(π΄ Γ π΅)β1-1-ontoβXπ β 2o if(π = β , π΄, π΅) β πΉ:(π΄ Γ π΅)β1-1βXπ β 2o if(π = β , π΄, π΅)) | |
4 | f1f1orn 6834 | . 2 β’ (πΉ:(π΄ Γ π΅)β1-1βXπ β 2o if(π = β , π΄, π΅) β πΉ:(π΄ Γ π΅)β1-1-ontoβran πΉ) | |
5 | 2, 3, 4 | mp2b 10 | 1 β’ πΉ:(π΄ Γ π΅)β1-1-ontoβran πΉ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 β c0 4314 ifcif 4520 {cpr 4622 β¨cop 4626 Γ cxp 5664 ran crn 5667 β1-1βwf1 6530 β1-1-ontoβwf1o 6532 β cmpo 7403 1oc1o 8454 2oc2o 8455 Xcixp 8886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-1o 8461 df-2o 8462 df-ixp 8887 df-en 8935 df-fin 8938 |
This theorem is referenced by: xpsbas 17514 xpsaddlem 17515 xpsadd 17516 xpsmul 17517 xpssca 17518 xpsvsca 17519 xpsless 17520 xpsle 17521 xpsmnd 18694 xpsgrp 18974 xpsrngd 20069 xpsringd 20216 xpstps 23624 xpstopnlem2 23625 xpsdsfn 24193 xpsxmet 24196 xpsdsval 24197 xpsmet 24198 xpsxms 24353 xpsms 24354 |
Copyright terms: Public domain | W3C validator |