MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsff1o2 Structured version   Visualization version   GIF version

Theorem xpsff1o2 17470
Description: The function appearing in xpsval 17471 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2o = {∅, 1o}. (Contributed by Mario Carneiro, 24-Jan-2015.)
Hypothesis
Ref Expression
xpsff1o.f 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
Assertion
Ref Expression
xpsff1o2 𝐹:(𝐴 × 𝐵)–1-1-onto→ran 𝐹
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xpsff1o2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 xpsff1o.f . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
21xpsff1o 17468 . 2 𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)
3 f1of1 6762 . 2 (𝐹:(𝐴 × 𝐵)–1-1-ontoX𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → 𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵))
4 f1f1orn 6774 . 2 (𝐹:(𝐴 × 𝐵)–1-1X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → 𝐹:(𝐴 × 𝐵)–1-1-onto→ran 𝐹)
52, 3, 4mp2b 10 1 𝐹:(𝐴 × 𝐵)–1-1-onto→ran 𝐹
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  c0 4283  ifcif 4475  {cpr 4578  cop 4582   × cxp 5614  ran crn 5617  1-1wf1 6478  1-1-ontowf1o 6480  cmpo 7348  1oc1o 8378  2oc2o 8379  Xcixp 8821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-1o 8385  df-2o 8386  df-ixp 8822  df-en 8870  df-fin 8873
This theorem is referenced by:  xpsbas  17473  xpsaddlem  17474  xpsadd  17475  xpsmul  17476  xpssca  17477  xpsvsca  17478  xpsless  17479  xpsle  17480  xpsmnd  18682  xpsgrp  18969  xpsrngd  20095  xpsringd  20248  xpstps  23723  xpstopnlem2  23724  xpsdsfn  24290  xpsxmet  24293  xpsdsval  24294  xpsmet  24295  xpsxms  24447  xpsms  24448
  Copyright terms: Public domain W3C validator