| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsff1o2 | Structured version Visualization version GIF version | ||
| Description: The function appearing in xpsval 17476 is a bijection from the cartesian product to the indexed cartesian product indexed on the pair 2o = {∅, 1o}. (Contributed by Mario Carneiro, 24-Jan-2015.) |
| Ref | Expression |
|---|---|
| xpsff1o.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
| Ref | Expression |
|---|---|
| xpsff1o2 | ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→ran 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsff1o.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
| 2 | 1 | xpsff1o 17473 | . 2 ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) |
| 3 | f1of1 6767 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → 𝐹:(𝐴 × 𝐵)–1-1→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵)) | |
| 4 | f1f1orn 6779 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)–1-1→X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) → 𝐹:(𝐴 × 𝐵)–1-1-onto→ran 𝐹) | |
| 5 | 2, 3, 4 | mp2b 10 | 1 ⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→ran 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4282 ifcif 4474 {cpr 4577 〈cop 4581 × cxp 5617 ran crn 5620 –1-1→wf1 6483 –1-1-onto→wf1o 6485 ∈ cmpo 7354 1oc1o 8384 2oc2o 8385 Xcixp 8827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-1o 8391 df-2o 8392 df-ixp 8828 df-en 8876 df-fin 8879 |
| This theorem is referenced by: xpsbas 17478 xpsaddlem 17479 xpsadd 17480 xpsmul 17481 xpssca 17482 xpsvsca 17483 xpsless 17484 xpsle 17485 xpsmnd 18687 xpsgrp 18974 xpsrngd 20099 xpsringd 20252 xpstps 23726 xpstopnlem2 23727 xpsdsfn 24293 xpsxmet 24296 xpsdsval 24297 xpsmet 24298 xpsxms 24450 xpsms 24451 |
| Copyright terms: Public domain | W3C validator |