MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsxms Structured version   Visualization version   GIF version

Theorem xpsxms 23143
Description: A binary product of metric spaces is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypothesis
Ref Expression
xpsms.t 𝑇 = (𝑅 ×s 𝑆)
Assertion
Ref Expression
xpsxms ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑇 ∈ ∞MetSp)

Proof of Theorem xpsxms
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsms.t . . 3 𝑇 = (𝑅 ×s 𝑆)
2 eqid 2821 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2821 . . 3 (Base‘𝑆) = (Base‘𝑆)
4 simpl 485 . . 3 ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑅 ∈ ∞MetSp)
5 simpr 487 . . 3 ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑆 ∈ ∞MetSp)
6 eqid 2821 . . 3 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
7 eqid 2821 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
8 eqid 2821 . . 3 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
91, 2, 3, 4, 5, 6, 7, 8xpsval 16842 . 2 ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑇 = ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
101, 2, 3, 4, 5, 6, 7, 8xpsrnbas 16843 . 2 ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
116xpsff1o2 16841 . . 3 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
12 f1ocnv 6626 . . 3 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→((Base‘𝑅) × (Base‘𝑆)))
1311, 12mp1i 13 . 2 ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→((Base‘𝑅) × (Base‘𝑆)))
14 fvexd 6684 . . 3 ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → (Scalar‘𝑅) ∈ V)
15 2onn 8265 . . . 4 2o ∈ ω
16 nnfi 8710 . . . 4 (2o ∈ ω → 2o ∈ Fin)
1715, 16mp1i 13 . . 3 ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 2o ∈ Fin)
18 xpscf 16837 . . . 4 ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶∞MetSp ↔ (𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp))
1918biimpri 230 . . 3 ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶∞MetSp)
208prdsxms 23139 . . 3 (((Scalar‘𝑅) ∈ V ∧ 2o ∈ Fin ∧ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶∞MetSp) → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ ∞MetSp)
2114, 17, 19, 20syl3anc 1367 . 2 ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ ∞MetSp)
229, 10, 13, 21imasf1oxms 23098 1 ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑇 ∈ ∞MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  c0 4290  {cpr 4568  cop 4572   × cxp 5552  ccnv 5553  ran crn 5555  wf 6350  1-1-ontowf1o 6353  cfv 6354  (class class class)co 7155  cmpo 7157  ωcom 7579  1oc1o 8094  2oc2o 8095  Fincfn 8508  Basecbs 16482  Scalarcsca 16567  Xscprds 16718   ×s cxps 16778  ∞MetSpcxms 22926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-icc 12744  df-fz 12892  df-fzo 13033  df-seq 13369  df-hash 13690  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-bl 20539  df-mopn 20540  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-xms 22929
This theorem is referenced by:  tmsxps  23145  tmsxpsmopn  23146
  Copyright terms: Public domain W3C validator