![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsxms | Structured version Visualization version GIF version |
Description: A binary product of metric spaces is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
xpsms.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
Ref | Expression |
---|---|
xpsxms | ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑇 ∈ ∞MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsms.t | . . 3 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
2 | eqid 2778 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2778 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
4 | simpl 475 | . . 3 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑅 ∈ ∞MetSp) | |
5 | simpr 477 | . . 3 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑆 ∈ ∞MetSp) | |
6 | eqid 2778 | . . 3 ⊢ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) | |
7 | eqid 2778 | . . 3 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
8 | eqid 2778 | . . 3 ⊢ ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) = ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 16701 | . 2 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑇 = (◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) “s ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8 | xpslem 16702 | . 2 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) = (Base‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})))) |
11 | 6 | xpsff1o2 16700 | . . 3 ⊢ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) |
12 | f1ocnv 6456 | . . 3 ⊢ ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆))) | |
13 | 11, 12 | mp1i 13 | . 2 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆))) |
14 | fvexd 6514 | . . 3 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → (Scalar‘𝑅) ∈ V) | |
15 | 2onn 8067 | . . . 4 ⊢ 2o ∈ ω | |
16 | nnfi 8506 | . . . 4 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
17 | 15, 16 | mp1i 13 | . . 3 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 2o ∈ Fin) |
18 | xpscf 16695 | . . . 4 ⊢ (◡({𝑅} +𝑐 {𝑆}):2o⟶∞MetSp ↔ (𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp)) | |
19 | 18 | biimpri 220 | . . 3 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → ◡({𝑅} +𝑐 {𝑆}):2o⟶∞MetSp) |
20 | 8 | prdsxms 22843 | . . 3 ⊢ (((Scalar‘𝑅) ∈ V ∧ 2o ∈ Fin ∧ ◡({𝑅} +𝑐 {𝑆}):2o⟶∞MetSp) → ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) ∈ ∞MetSp) |
21 | 14, 17, 19, 20 | syl3anc 1351 | . 2 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) ∈ ∞MetSp) |
22 | 9, 10, 13, 21 | imasf1oxms 22802 | 1 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑇 ∈ ∞MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 Vcvv 3415 {csn 4441 × cxp 5405 ◡ccnv 5406 ran crn 5408 ⟶wf 6184 –1-1-onto→wf1o 6187 ‘cfv 6188 (class class class)co 6976 ∈ cmpo 6978 ωcom 7396 2oc2o 7899 Fincfn 8306 +𝑐 ccda 9387 Basecbs 16339 Scalarcsca 16424 Xscprds 16575 ×s cxps 16635 ∞MetSpcxms 22630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-of 7227 df-om 7397 df-1st 7501 df-2nd 7502 df-supp 7634 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-oadd 7909 df-er 8089 df-map 8208 df-ixp 8260 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-fsupp 8629 df-fi 8670 df-sup 8701 df-inf 8702 df-oi 8769 df-card 9162 df-cda 9388 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-7 11508 df-8 11509 df-9 11510 df-n0 11708 df-z 11794 df-dec 11912 df-uz 12059 df-q 12163 df-rp 12205 df-xneg 12324 df-xadd 12325 df-xmul 12326 df-icc 12561 df-fz 12709 df-fzo 12850 df-seq 13185 df-hash 13506 df-struct 16341 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-mulr 16435 df-sca 16437 df-vsca 16438 df-ip 16439 df-tset 16440 df-ple 16441 df-ds 16443 df-hom 16445 df-cco 16446 df-rest 16552 df-topn 16553 df-0g 16571 df-gsum 16572 df-topgen 16573 df-pt 16574 df-prds 16577 df-xrs 16631 df-qtop 16636 df-imas 16637 df-xps 16639 df-mre 16715 df-mrc 16716 df-acs 16718 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-submnd 17804 df-mulg 18012 df-cntz 18218 df-cmn 18668 df-psmet 20239 df-xmet 20240 df-bl 20242 df-mopn 20243 df-top 21206 df-topon 21223 df-topsp 21245 df-bases 21258 df-xms 22633 |
This theorem is referenced by: tmsxps 22849 tmsxpsmopn 22850 |
Copyright terms: Public domain | W3C validator |