MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsgrp Structured version   Visualization version   GIF version

Theorem xpsgrp 17995
Description: The binary product of groups is a group. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypothesis
Ref Expression
xpsgrp.t 𝑇 = (𝑅 ×s 𝑆)
Assertion
Ref Expression
xpsgrp ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 ∈ Grp)

Proof of Theorem xpsgrp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsgrp.t . . 3 𝑇 = (𝑅 ×s 𝑆)
2 eqid 2772 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2772 . . 3 (Base‘𝑆) = (Base‘𝑆)
4 simpl 475 . . 3 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑅 ∈ Grp)
5 simpr 477 . . 3 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑆 ∈ Grp)
6 eqid 2772 . . 3 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦}))
7 eqid 2772 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
8 eqid 2772 . . 3 ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})) = ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))
91, 2, 3, 4, 5, 6, 7, 8xpsval 16691 . 2 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 = ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})) “s ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))))
106xpsff1o2 16690 . . . . 5 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦}))
111, 2, 3, 4, 5, 6, 7, 8xpslem 16692 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})) = (Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))))
1211f1oeq3d 6435 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})) ↔ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→(Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})))))
1310, 12mpbii 225 . . . 4 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→(Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))))
14 f1ocnv 6450 . . . 4 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→(Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):(Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})))–1-1-onto→((Base‘𝑅) × (Base‘𝑆)))
15 f1of1 6437 . . . 4 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):(Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})))–1-1-onto→((Base‘𝑅) × (Base‘𝑆)) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):(Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})))–1-1→((Base‘𝑅) × (Base‘𝑆)))
1613, 14, 153syl 18 . . 3 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):(Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})))–1-1→((Base‘𝑅) × (Base‘𝑆)))
17 2on 7906 . . . . 5 2o ∈ On
1817a1i 11 . . . 4 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 2o ∈ On)
19 fvexd 6508 . . . 4 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → (Scalar‘𝑅) ∈ V)
20 xpscf 16685 . . . . 5 (({𝑅} +𝑐 {𝑆}):2o⟶Grp ↔ (𝑅 ∈ Grp ∧ 𝑆 ∈ Grp))
2120biimpri 220 . . . 4 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → ({𝑅} +𝑐 {𝑆}):2o⟶Grp)
228, 18, 19, 21prdsgrpd 17986 . . 3 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})) ∈ Grp)
23 eqid 2772 . . . 4 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})) “s ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) = ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})) “s ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})))
24 eqid 2772 . . . 4 (Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) = (Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})))
2523, 24imasgrpf1 17993 . . 3 (((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):(Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})))–1-1→((Base‘𝑅) × (Base‘𝑆)) ∧ ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})) ∈ Grp) → ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})) “s ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ∈ Grp)
2616, 22, 25syl2anc 576 . 2 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})) “s ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ∈ Grp)
279, 26eqeltrd 2860 1 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2048  Vcvv 3409  {csn 4435   × cxp 5398  ccnv 5399  ran crn 5401  Oncon0 6023  wf 6178  1-1wf1 6179  1-1-ontowf1o 6181  cfv 6182  (class class class)co 6970  cmpo 6972  2oc2o 7891   +𝑐 ccda 9379  Basecbs 16329  Scalarcsca 16414  Xscprds 16565  s cimas 16623   ×s cxps 16625  Grpcgrp 17881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-2o 7898  df-oadd 7901  df-er 8081  df-map 8200  df-ixp 8252  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-sup 8693  df-inf 8694  df-cda 9380  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-3 11497  df-4 11498  df-5 11499  df-6 11500  df-7 11501  df-8 11502  df-9 11503  df-n0 11701  df-z 11787  df-dec 11905  df-uz 12052  df-fz 12702  df-struct 16331  df-ndx 16332  df-slot 16333  df-base 16335  df-plusg 16424  df-mulr 16425  df-sca 16427  df-vsca 16428  df-ip 16429  df-tset 16430  df-ple 16431  df-ds 16433  df-hom 16435  df-cco 16436  df-0g 16561  df-prds 16567  df-imas 16627  df-xps 16629  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-grp 17884  df-minusg 17885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator