Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsgrp Structured version   Visualization version   GIF version

Theorem xpsgrp 18228
 Description: The binary product of groups is a group. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypothesis
Ref Expression
xpsgrp.t 𝑇 = (𝑅 ×s 𝑆)
Assertion
Ref Expression
xpsgrp ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 ∈ Grp)

Proof of Theorem xpsgrp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsgrp.t . . 3 𝑇 = (𝑅 ×s 𝑆)
2 eqid 2798 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2798 . . 3 (Base‘𝑆) = (Base‘𝑆)
4 simpl 486 . . 3 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑅 ∈ Grp)
5 simpr 488 . . 3 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑆 ∈ Grp)
6 eqid 2798 . . 3 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
7 eqid 2798 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
8 eqid 2798 . . 3 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
91, 2, 3, 4, 5, 6, 7, 8xpsval 16852 . 2 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 = ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
106xpsff1o2 16851 . . . . 5 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
111, 2, 3, 4, 5, 6, 7, 8xpsrnbas 16853 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
1211f1oeq3d 6593 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ↔ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→(Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))))
1310, 12mpbii 236 . . . 4 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→(Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
14 f1ocnv 6608 . . . 4 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→(Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆)))
15 f1of1 6595 . . . 4 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆)) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))–1-1→((Base‘𝑅) × (Base‘𝑆)))
1613, 14, 153syl 18 . . 3 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))–1-1→((Base‘𝑅) × (Base‘𝑆)))
17 2on 8109 . . . . 5 2o ∈ On
1817a1i 11 . . . 4 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 2o ∈ On)
19 fvexd 6667 . . . 4 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → (Scalar‘𝑅) ∈ V)
20 xpscf 16847 . . . . 5 ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶Grp ↔ (𝑅 ∈ Grp ∧ 𝑆 ∈ Grp))
2120biimpri 231 . . . 4 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶Grp)
228, 18, 19, 21prdsgrpd 18219 . . 3 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ Grp)
23 eqid 2798 . . . 4 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
24 eqid 2798 . . . 4 (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
2523, 24imasgrpf1 18226 . . 3 (((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))–1-1→((Base‘𝑅) × (Base‘𝑆)) ∧ ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ Grp) → ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∈ Grp)
2616, 22, 25syl2anc 587 . 2 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∈ Grp)
279, 26eqeltrd 2890 1 ((𝑅 ∈ Grp ∧ 𝑆 ∈ Grp) → 𝑇 ∈ Grp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  Vcvv 3441  ∅c0 4245  {cpr 4529  ⟨cop 4533   × cxp 5520  ◡ccnv 5521  ran crn 5523  Oncon0 6164  ⟶wf 6325  –1-1→wf1 6326  –1-1-onto→wf1o 6328  ‘cfv 6329  (class class class)co 7142   ∈ cmpo 7144  1oc1o 8093  2oc2o 8094  Basecbs 16492  Scalarcsca 16577  Xscprds 16728   “s cimas 16786   ×s cxps 16788  Grpcgrp 18112 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7451  ax-cnex 10597  ax-resscn 10598  ax-1cn 10599  ax-icn 10600  ax-addcl 10601  ax-addrcl 10602  ax-mulcl 10603  ax-mulrcl 10604  ax-mulcom 10605  ax-addass 10606  ax-mulass 10607  ax-distr 10608  ax-i2m1 10609  ax-1ne0 10610  ax-1rid 10611  ax-rnegex 10612  ax-rrecex 10613  ax-cnre 10614  ax-pre-lttri 10615  ax-pre-lttrn 10616  ax-pre-ltadd 10617  ax-pre-mulgt0 10618 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3722  df-csb 3830  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4246  df-if 4428  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7571  df-1st 7681  df-2nd 7682  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-2o 8101  df-oadd 8104  df-er 8287  df-map 8406  df-ixp 8460  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-sup 8905  df-inf 8906  df-pnf 10681  df-mnf 10682  df-xr 10683  df-ltxr 10684  df-le 10685  df-sub 10876  df-neg 10877  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11987  df-dec 12104  df-uz 12249  df-fz 12903  df-struct 16494  df-ndx 16495  df-slot 16496  df-base 16498  df-plusg 16587  df-mulr 16588  df-sca 16590  df-vsca 16591  df-ip 16592  df-tset 16593  df-ple 16594  df-ds 16596  df-hom 16598  df-cco 16599  df-0g 16724  df-prds 16730  df-imas 16790  df-xps 16792  df-mgm 17861  df-sgrp 17910  df-mnd 17921  df-grp 18115  df-minusg 18116 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator