MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsless Structured version   Visualization version   GIF version

Theorem xpsless 17567
Description: Closure of the ordering in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
xpsle.t 𝑇 = (𝑅 Γ—s 𝑆)
xpsle.x 𝑋 = (Baseβ€˜π‘…)
xpsle.y π‘Œ = (Baseβ€˜π‘†)
xpsle.1 (πœ‘ β†’ 𝑅 ∈ 𝑉)
xpsle.2 (πœ‘ β†’ 𝑆 ∈ π‘Š)
xpsle.p ≀ = (leβ€˜π‘‡)
Assertion
Ref Expression
xpsless (πœ‘ β†’ ≀ βŠ† ((𝑋 Γ— π‘Œ) Γ— (𝑋 Γ— π‘Œ)))

Proof of Theorem xpsless
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsle.t . . 3 𝑇 = (𝑅 Γ—s 𝑆)
2 xpsle.x . . 3 𝑋 = (Baseβ€˜π‘…)
3 xpsle.y . . 3 π‘Œ = (Baseβ€˜π‘†)
4 xpsle.1 . . 3 (πœ‘ β†’ 𝑅 ∈ 𝑉)
5 xpsle.2 . . 3 (πœ‘ β†’ 𝑆 ∈ π‘Š)
6 eqid 2728 . . 3 (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})
7 eqid 2728 . . 3 (Scalarβ€˜π‘…) = (Scalarβ€˜π‘…)
8 eqid 2728 . . 3 ((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}) = ((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})
91, 2, 3, 4, 5, 6, 7, 8xpsval 17559 . 2 (πœ‘ β†’ 𝑇 = (β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) β€œs ((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})))
101, 2, 3, 4, 5, 6, 7, 8xpsrnbas 17560 . 2 (πœ‘ β†’ ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) = (Baseβ€˜((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})))
116xpsff1o2 17558 . . . 4 (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):(𝑋 Γ— π‘Œ)–1-1-ontoβ†’ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})
12 f1ocnv 6856 . . . 4 ((π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):(𝑋 Γ— π‘Œ)–1-1-ontoβ†’ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) β†’ β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})–1-1-ontoβ†’(𝑋 Γ— π‘Œ))
1311, 12mp1i 13 . . 3 (πœ‘ β†’ β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})–1-1-ontoβ†’(𝑋 Γ— π‘Œ))
14 f1ofo 6851 . . 3 (β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})–1-1-ontoβ†’(𝑋 Γ— π‘Œ) β†’ β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})–ontoβ†’(𝑋 Γ— π‘Œ))
1513, 14syl 17 . 2 (πœ‘ β†’ β—‘(π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):ran (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})–ontoβ†’(𝑋 Γ— π‘Œ))
16 ovexd 7461 . 2 (πœ‘ β†’ ((Scalarβ€˜π‘…)Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}) ∈ V)
17 xpsle.p . 2 ≀ = (leβ€˜π‘‡)
189, 10, 15, 16, 17imasless 17529 1 (πœ‘ β†’ ≀ βŠ† ((𝑋 Γ— π‘Œ) Γ— (𝑋 Γ— π‘Œ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  Vcvv 3473   βŠ† wss 3949  βˆ…c0 4326  {cpr 4634  βŸ¨cop 4638   Γ— cxp 5680  β—‘ccnv 5681  ran crn 5683  β€“ontoβ†’wfo 6551  β€“1-1-ontoβ†’wf1o 6552  β€˜cfv 6553  (class class class)co 7426   ∈ cmpo 7428  1oc1o 8486  Basecbs 17187  Scalarcsca 17243  lecple 17247  Xscprds 17434   Γ—s cxps 17495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-er 8731  df-map 8853  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-sup 9473  df-inf 9474  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-fz 13525  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-mulr 17254  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-hom 17264  df-cco 17265  df-prds 17436  df-imas 17497  df-xps 17499
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator