![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsless | Structured version Visualization version GIF version |
Description: Closure of the ordering in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
Ref | Expression |
---|---|
xpsle.t | β’ π = (π Γs π) |
xpsle.x | β’ π = (Baseβπ ) |
xpsle.y | β’ π = (Baseβπ) |
xpsle.1 | β’ (π β π β π) |
xpsle.2 | β’ (π β π β π) |
xpsle.p | β’ β€ = (leβπ) |
Ref | Expression |
---|---|
xpsless | β’ (π β β€ β ((π Γ π) Γ (π Γ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsle.t | . . 3 β’ π = (π Γs π) | |
2 | xpsle.x | . . 3 β’ π = (Baseβπ ) | |
3 | xpsle.y | . . 3 β’ π = (Baseβπ) | |
4 | xpsle.1 | . . 3 β’ (π β π β π) | |
5 | xpsle.2 | . . 3 β’ (π β π β π) | |
6 | eqid 2728 | . . 3 β’ (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}) = (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}) | |
7 | eqid 2728 | . . 3 β’ (Scalarβπ ) = (Scalarβπ ) | |
8 | eqid 2728 | . . 3 β’ ((Scalarβπ )Xs{β¨β , π β©, β¨1o, πβ©}) = ((Scalarβπ )Xs{β¨β , π β©, β¨1o, πβ©}) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 17559 | . 2 β’ (π β π = (β‘(π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}) βs ((Scalarβπ )Xs{β¨β , π β©, β¨1o, πβ©}))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsrnbas 17560 | . 2 β’ (π β ran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}) = (Baseβ((Scalarβπ )Xs{β¨β , π β©, β¨1o, πβ©}))) |
11 | 6 | xpsff1o2 17558 | . . . 4 β’ (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):(π Γ π)β1-1-ontoβran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}) |
12 | f1ocnv 6856 | . . . 4 β’ ((π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):(π Γ π)β1-1-ontoβran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}) β β‘(π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©})β1-1-ontoβ(π Γ π)) | |
13 | 11, 12 | mp1i 13 | . . 3 β’ (π β β‘(π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©})β1-1-ontoβ(π Γ π)) |
14 | f1ofo 6851 | . . 3 β’ (β‘(π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©})β1-1-ontoβ(π Γ π) β β‘(π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©})βontoβ(π Γ π)) | |
15 | 13, 14 | syl 17 | . 2 β’ (π β β‘(π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©})βontoβ(π Γ π)) |
16 | ovexd 7461 | . 2 β’ (π β ((Scalarβπ )Xs{β¨β , π β©, β¨1o, πβ©}) β V) | |
17 | xpsle.p | . 2 β’ β€ = (leβπ) | |
18 | 9, 10, 15, 16, 17 | imasless 17529 | 1 β’ (π β β€ β ((π Γ π) Γ (π Γ π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3473 β wss 3949 β c0 4326 {cpr 4634 β¨cop 4638 Γ cxp 5680 β‘ccnv 5681 ran crn 5683 βontoβwfo 6551 β1-1-ontoβwf1o 6552 βcfv 6553 (class class class)co 7426 β cmpo 7428 1oc1o 8486 Basecbs 17187 Scalarcsca 17243 lecple 17247 Xscprds 17434 Γs cxps 17495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-2o 8494 df-er 8731 df-map 8853 df-ixp 8923 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-sup 9473 df-inf 9474 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17188 df-plusg 17253 df-mulr 17254 df-sca 17256 df-vsca 17257 df-ip 17258 df-tset 17259 df-ple 17260 df-ds 17262 df-hom 17264 df-cco 17265 df-prds 17436 df-imas 17497 df-xps 17499 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |