| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpssca | Structured version Visualization version GIF version | ||
| Description: Value of the scalar field of a binary structure product. For concreteness, we choose the scalar field to match the left argument, but in most cases where this slot is meaningful both factors will have the same scalar field, so that it doesn't matter which factor is chosen. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpssca.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
| xpssca.g | ⊢ 𝐺 = (Scalar‘𝑅) |
| xpssca.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| xpssca.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| xpssca | ⊢ (𝜑 → 𝐺 = (Scalar‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) = (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) | |
| 2 | xpssca.g | . . . . 5 ⊢ 𝐺 = (Scalar‘𝑅) | |
| 3 | 2 | fvexi 6840 | . . . 4 ⊢ 𝐺 ∈ V |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐺 ∈ V) |
| 5 | prex 5379 | . . . 4 ⊢ {〈∅, 𝑅〉, 〈1o, 𝑆〉} ∈ V | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (𝜑 → {〈∅, 𝑅〉, 〈1o, 𝑆〉} ∈ V) |
| 7 | 1, 4, 6 | prdssca 17379 | . 2 ⊢ (𝜑 → 𝐺 = (Scalar‘(𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) |
| 8 | xpssca.t | . . . 4 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
| 9 | eqid 2729 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 10 | eqid 2729 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 11 | xpssca.1 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 12 | xpssca.2 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
| 13 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
| 14 | 8, 9, 10, 11, 12, 13, 2, 1 | xpsval 17493 | . . 3 ⊢ (𝜑 → 𝑇 = (◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) |
| 15 | 8, 9, 10, 11, 12, 13, 2, 1 | xpsrnbas 17494 | . . 3 ⊢ (𝜑 → ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (Base‘(𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) |
| 16 | 13 | xpsff1o2 17492 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
| 17 | f1ocnv 6780 | . . . . 5 ⊢ ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–1-1-onto→((Base‘𝑅) × (Base‘𝑆))) | |
| 18 | 16, 17 | mp1i 13 | . . . 4 ⊢ (𝜑 → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–1-1-onto→((Base‘𝑅) × (Base‘𝑆))) |
| 19 | f1ofo 6775 | . . . 4 ⊢ (◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–1-1-onto→((Base‘𝑅) × (Base‘𝑆)) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–onto→((Base‘𝑅) × (Base‘𝑆))) | |
| 20 | 18, 19 | syl 17 | . . 3 ⊢ (𝜑 → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–onto→((Base‘𝑅) × (Base‘𝑆))) |
| 21 | ovexd 7388 | . . 3 ⊢ (𝜑 → (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) ∈ V) | |
| 22 | eqid 2729 | . . 3 ⊢ (Scalar‘(𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) = (Scalar‘(𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) | |
| 23 | 14, 15, 20, 21, 22 | imassca 17442 | . 2 ⊢ (𝜑 → (Scalar‘(𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) = (Scalar‘𝑇)) |
| 24 | 7, 23 | eqtrd 2764 | 1 ⊢ (𝜑 → 𝐺 = (Scalar‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 {cpr 4581 〈cop 4585 × cxp 5621 ◡ccnv 5622 ran crn 5624 –onto→wfo 6484 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 1oc1o 8388 Basecbs 17139 Scalarcsca 17183 Xscprds 17368 ×s cxps 17429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-z 12491 df-dec 12611 df-uz 12755 df-fz 13430 df-struct 17077 df-slot 17112 df-ndx 17124 df-base 17140 df-plusg 17193 df-mulr 17194 df-sca 17196 df-vsca 17197 df-ip 17198 df-tset 17199 df-ple 17200 df-ds 17202 df-hom 17204 df-cco 17205 df-prds 17370 df-imas 17431 df-xps 17433 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |