MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpssca Structured version   Visualization version   GIF version

Theorem xpssca 16439
Description: Value of the scalar field of a binary structure product. For concreteness, we choose the scalar field to match the left argument, but in most cases where this slot is meaningful both factors will have the same scalar field, so that it doesn't matter which factor is chosen. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
xpssca.t 𝑇 = (𝑅 ×s 𝑆)
xpssca.g 𝐺 = (Scalar‘𝑅)
xpssca.1 (𝜑𝑅𝑉)
xpssca.2 (𝜑𝑆𝑊)
Assertion
Ref Expression
xpssca (𝜑𝐺 = (Scalar‘𝑇))

Proof of Theorem xpssca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpssca.t . . 3 𝑇 = (𝑅 ×s 𝑆)
2 eqid 2771 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2771 . . 3 (Base‘𝑆) = (Base‘𝑆)
4 xpssca.1 . . 3 (𝜑𝑅𝑉)
5 xpssca.2 . . 3 (𝜑𝑆𝑊)
6 eqid 2771 . . 3 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦}))
7 xpssca.g . . 3 𝐺 = (Scalar‘𝑅)
8 eqid 2771 . . 3 (𝐺Xs({𝑅} +𝑐 {𝑆})) = (𝐺Xs({𝑅} +𝑐 {𝑆}))
91, 2, 3, 4, 5, 6, 7, 8xpsval 16433 . 2 (𝜑𝑇 = ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})) “s (𝐺Xs({𝑅} +𝑐 {𝑆}))))
101, 2, 3, 4, 5, 6, 7, 8xpslem 16434 . 2 (𝜑 → ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})) = (Base‘(𝐺Xs({𝑅} +𝑐 {𝑆}))))
116xpsff1o2 16432 . . . 4 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦}))
12 f1ocnv 6288 . . . 4 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆)))
1311, 12mp1i 13 . . 3 (𝜑(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆)))
14 f1ofo 6283 . . 3 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆)) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦}))–onto→((Base‘𝑅) × (Base‘𝑆)))
1513, 14syl 17 . 2 (𝜑(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ({𝑥} +𝑐 {𝑦}))–onto→((Base‘𝑅) × (Base‘𝑆)))
16 ovexd 6823 . 2 (𝜑 → (𝐺Xs({𝑅} +𝑐 {𝑆})) ∈ V)
177fvexi 6341 . . . . 5 𝐺 ∈ V
1817a1i 11 . . . 4 (⊤ → 𝐺 ∈ V)
19 ovex 6821 . . . . . 6 ({𝑅} +𝑐 {𝑆}) ∈ V
2019cnvex 7258 . . . . 5 ({𝑅} +𝑐 {𝑆}) ∈ V
2120a1i 11 . . . 4 (⊤ → ({𝑅} +𝑐 {𝑆}) ∈ V)
228, 18, 21prdssca 16317 . . 3 (⊤ → 𝐺 = (Scalar‘(𝐺Xs({𝑅} +𝑐 {𝑆}))))
2322trud 1641 . 2 𝐺 = (Scalar‘(𝐺Xs({𝑅} +𝑐 {𝑆})))
249, 10, 15, 16, 23imassca 16380 1 (𝜑𝐺 = (Scalar‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wtru 1632  wcel 2145  Vcvv 3351  {csn 4316   × cxp 5247  ccnv 5248  ran crn 5250  ontowfo 6027  1-1-ontowf1o 6028  cfv 6029  (class class class)co 6791  cmpt2 6793   +𝑐 ccda 9189  Basecbs 16057  Scalarcsca 16145  Xscprds 16307   ×s cxps 16367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-er 7894  df-map 8009  df-ixp 8061  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-sup 8502  df-inf 8503  df-cda 9190  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-z 11578  df-dec 11694  df-uz 11887  df-fz 12527  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-plusg 16155  df-mulr 16156  df-sca 16158  df-vsca 16159  df-ip 16160  df-tset 16161  df-ple 16162  df-ds 16165  df-hom 16167  df-cco 16168  df-prds 16309  df-imas 16369  df-xps 16371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator