MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpssca Structured version   Visualization version   GIF version

Theorem xpssca 17459
Description: Value of the scalar field of a binary structure product. For concreteness, we choose the scalar field to match the left argument, but in most cases where this slot is meaningful both factors will have the same scalar field, so that it doesn't matter which factor is chosen. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
xpssca.t 𝑇 = (𝑅 Γ—s 𝑆)
xpssca.g 𝐺 = (Scalarβ€˜π‘…)
xpssca.1 (πœ‘ β†’ 𝑅 ∈ 𝑉)
xpssca.2 (πœ‘ β†’ 𝑆 ∈ π‘Š)
Assertion
Ref Expression
xpssca (πœ‘ β†’ 𝐺 = (Scalarβ€˜π‘‡))

Proof of Theorem xpssca
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (𝐺Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}) = (𝐺Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})
2 xpssca.g . . . . 5 𝐺 = (Scalarβ€˜π‘…)
32fvexi 6857 . . . 4 𝐺 ∈ V
43a1i 11 . . 3 (πœ‘ β†’ 𝐺 ∈ V)
5 prex 5390 . . . 4 {βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©} ∈ V
65a1i 11 . . 3 (πœ‘ β†’ {βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©} ∈ V)
71, 4, 6prdssca 17339 . 2 (πœ‘ β†’ 𝐺 = (Scalarβ€˜(𝐺Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})))
8 xpssca.t . . . 4 𝑇 = (𝑅 Γ—s 𝑆)
9 eqid 2737 . . . 4 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
10 eqid 2737 . . . 4 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
11 xpssca.1 . . . 4 (πœ‘ β†’ 𝑅 ∈ 𝑉)
12 xpssca.2 . . . 4 (πœ‘ β†’ 𝑆 ∈ π‘Š)
13 eqid 2737 . . . 4 (π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘†) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) = (π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘†) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})
148, 9, 10, 11, 12, 13, 2, 1xpsval 17453 . . 3 (πœ‘ β†’ 𝑇 = (β—‘(π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘†) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) β€œs (𝐺Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})))
158, 9, 10, 11, 12, 13, 2, 1xpsrnbas 17454 . . 3 (πœ‘ β†’ ran (π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘†) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) = (Baseβ€˜(𝐺Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})))
1613xpsff1o2 17452 . . . . 5 (π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘†) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):((Baseβ€˜π‘…) Γ— (Baseβ€˜π‘†))–1-1-ontoβ†’ran (π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘†) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})
17 f1ocnv 6797 . . . . 5 ((π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘†) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):((Baseβ€˜π‘…) Γ— (Baseβ€˜π‘†))–1-1-ontoβ†’ran (π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘†) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) β†’ β—‘(π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘†) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):ran (π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘†) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})–1-1-ontoβ†’((Baseβ€˜π‘…) Γ— (Baseβ€˜π‘†)))
1816, 17mp1i 13 . . . 4 (πœ‘ β†’ β—‘(π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘†) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):ran (π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘†) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})–1-1-ontoβ†’((Baseβ€˜π‘…) Γ— (Baseβ€˜π‘†)))
19 f1ofo 6792 . . . 4 (β—‘(π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘†) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):ran (π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘†) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})–1-1-ontoβ†’((Baseβ€˜π‘…) Γ— (Baseβ€˜π‘†)) β†’ β—‘(π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘†) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):ran (π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘†) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})–ontoβ†’((Baseβ€˜π‘…) Γ— (Baseβ€˜π‘†)))
2018, 19syl 17 . . 3 (πœ‘ β†’ β—‘(π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘†) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}):ran (π‘₯ ∈ (Baseβ€˜π‘…), 𝑦 ∈ (Baseβ€˜π‘†) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})–ontoβ†’((Baseβ€˜π‘…) Γ— (Baseβ€˜π‘†)))
21 ovexd 7393 . . 3 (πœ‘ β†’ (𝐺Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}) ∈ V)
22 eqid 2737 . . 3 (Scalarβ€˜(𝐺Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) = (Scalarβ€˜(𝐺Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}))
2314, 15, 20, 21, 22imassca 17402 . 2 (πœ‘ β†’ (Scalarβ€˜(𝐺Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})) = (Scalarβ€˜π‘‡))
247, 23eqtrd 2777 1 (πœ‘ β†’ 𝐺 = (Scalarβ€˜π‘‡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  Vcvv 3446  βˆ…c0 4283  {cpr 4589  βŸ¨cop 4593   Γ— cxp 5632  β—‘ccnv 5633  ran crn 5635  β€“ontoβ†’wfo 6495  β€“1-1-ontoβ†’wf1o 6496  β€˜cfv 6497  (class class class)co 7358   ∈ cmpo 7360  1oc1o 8406  Basecbs 17084  Scalarcsca 17137  Xscprds 17328   Γ—s cxps 17389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-2o 8414  df-er 8649  df-map 8768  df-ixp 8837  df-en 8885  df-dom 8886  df-sdom 8887  df-fin 8888  df-sup 9379  df-inf 9380  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-nn 12155  df-2 12217  df-3 12218  df-4 12219  df-5 12220  df-6 12221  df-7 12222  df-8 12223  df-9 12224  df-n0 12415  df-z 12501  df-dec 12620  df-uz 12765  df-fz 13426  df-struct 17020  df-slot 17055  df-ndx 17067  df-base 17085  df-plusg 17147  df-mulr 17148  df-sca 17150  df-vsca 17151  df-ip 17152  df-tset 17153  df-ple 17154  df-ds 17156  df-hom 17158  df-cco 17159  df-prds 17330  df-imas 17391  df-xps 17393
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator