MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpssca Structured version   Visualization version   GIF version

Theorem xpssca 17529
Description: Value of the scalar field of a binary structure product. For concreteness, we choose the scalar field to match the left argument, but in most cases where this slot is meaningful both factors will have the same scalar field, so that it doesn't matter which factor is chosen. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
xpssca.t 𝑇 = (𝑅 ×s 𝑆)
xpssca.g 𝐺 = (Scalar‘𝑅)
xpssca.1 (𝜑𝑅𝑉)
xpssca.2 (𝜑𝑆𝑊)
Assertion
Ref Expression
xpssca (𝜑𝐺 = (Scalar‘𝑇))

Proof of Theorem xpssca
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2 xpssca.g . . . . 5 𝐺 = (Scalar‘𝑅)
32fvexi 6905 . . . 4 𝐺 ∈ V
43a1i 11 . . 3 (𝜑𝐺 ∈ V)
5 prex 5432 . . . 4 {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} ∈ V
65a1i 11 . . 3 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} ∈ V)
71, 4, 6prdssca 17409 . 2 (𝜑𝐺 = (Scalar‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
8 xpssca.t . . . 4 𝑇 = (𝑅 ×s 𝑆)
9 eqid 2731 . . . 4 (Base‘𝑅) = (Base‘𝑅)
10 eqid 2731 . . . 4 (Base‘𝑆) = (Base‘𝑆)
11 xpssca.1 . . . 4 (𝜑𝑅𝑉)
12 xpssca.2 . . . 4 (𝜑𝑆𝑊)
13 eqid 2731 . . . 4 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
148, 9, 10, 11, 12, 13, 2, 1xpsval 17523 . . 3 (𝜑𝑇 = ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
158, 9, 10, 11, 12, 13, 2, 1xpsrnbas 17524 . . 3 (𝜑 → ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
1613xpsff1o2 17522 . . . . 5 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
17 f1ocnv 6845 . . . . 5 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→((Base‘𝑅) × (Base‘𝑆)))
1816, 17mp1i 13 . . . 4 (𝜑(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→((Base‘𝑅) × (Base‘𝑆)))
19 f1ofo 6840 . . . 4 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→((Base‘𝑅) × (Base‘𝑆)) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→((Base‘𝑅) × (Base‘𝑆)))
2018, 19syl 17 . . 3 (𝜑(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→((Base‘𝑅) × (Base‘𝑆)))
21 ovexd 7447 . . 3 (𝜑 → (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ V)
22 eqid 2731 . . 3 (Scalar‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (Scalar‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
2314, 15, 20, 21, 22imassca 17472 . 2 (𝜑 → (Scalar‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (Scalar‘𝑇))
247, 23eqtrd 2771 1 (𝜑𝐺 = (Scalar‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  Vcvv 3473  c0 4322  {cpr 4630  cop 4634   × cxp 5674  ccnv 5675  ran crn 5677  ontowfo 6541  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7412  cmpo 7414  1oc1o 8465  Basecbs 17151  Scalarcsca 17207  Xscprds 17398   ×s cxps 17459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-er 8709  df-map 8828  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-struct 17087  df-slot 17122  df-ndx 17134  df-base 17152  df-plusg 17217  df-mulr 17218  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-hom 17228  df-cco 17229  df-prds 17400  df-imas 17461  df-xps 17463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator