Step | Hyp | Ref
| Expression |
1 | | xpsds.t |
. . 3
β’ π = (π
Γs π) |
2 | | xpsds.x |
. . 3
β’ π = (Baseβπ
) |
3 | | xpsds.y |
. . 3
β’ π = (Baseβπ) |
4 | | xpsds.1 |
. . 3
β’ (π β π
β π) |
5 | | xpsds.2 |
. . 3
β’ (π β π β π) |
6 | | eqid 2730 |
. . 3
β’ (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) = (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) |
7 | | eqid 2730 |
. . 3
β’
(Scalarβπ
) =
(Scalarβπ
) |
8 | | eqid 2730 |
. . 3
β’
((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}) = ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 17520 |
. 2
β’ (π β π = (β‘(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})
βs ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsrnbas 17521 |
. 2
β’ (π β ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) =
(Baseβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}))) |
11 | 6 | xpsff1o2 17519 |
. . 3
β’ (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):(π Γ π)β1-1-ontoβran
(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) |
12 | | f1ocnv 6844 |
. . 3
β’ ((π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):(π Γ π)β1-1-ontoβran
(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) β β‘(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})β1-1-ontoβ(π Γ π)) |
13 | 11, 12 | mp1i 13 |
. 2
β’ (π β β‘(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})β1-1-ontoβ(π Γ π)) |
14 | | ovexd 7446 |
. 2
β’ (π β ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©}) β
V) |
15 | | eqid 2730 |
. 2
β’
((distβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©})) βΎ (ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) Γ ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}))) =
((distβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©})) βΎ (ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) Γ ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}))) |
16 | | xpsds.p |
. 2
β’ π = (distβπ) |
17 | | xpsds.m |
. . . 4
β’ π = ((distβπ
) βΎ (π Γ π)) |
18 | | xpsds.n |
. . . 4
β’ π = ((distβπ) βΎ (π Γ π)) |
19 | | xpsds.3 |
. . . 4
β’ (π β π β (βMetβπ)) |
20 | | xpsds.4 |
. . . 4
β’ (π β π β (βMetβπ)) |
21 | 1, 2, 3, 4, 5, 16,
17, 18, 19, 20 | xpsxmetlem 24105 |
. . 3
β’ (π β
(distβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©})) β
(βMetβran (π₯
β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}))) |
22 | | ssid 4003 |
. . 3
β’ ran
(π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) β ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) |
23 | | xmetres2 24087 |
. . 3
β’
(((distβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©})) β
(βMetβran (π₯
β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})) β§ ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) β ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©})) β
((distβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©})) βΎ (ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) Γ ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}))) β
(βMetβran (π₯
β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}))) |
24 | 21, 22, 23 | sylancl 584 |
. 2
β’ (π β
((distβ((Scalarβπ
)Xs{β¨β
, π
β©, β¨1o, πβ©})) βΎ (ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}) Γ ran (π₯ β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}))) β
(βMetβran (π₯
β π, π¦ β π β¦ {β¨β
, π₯β©, β¨1o, π¦β©}))) |
25 | 9, 10, 13, 14, 15, 16, 24 | imasf1oxmet 24101 |
1
β’ (π β π β (βMetβ(π Γ π))) |