![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsxmet | Structured version Visualization version GIF version |
Description: A product metric of extended metrics is an extended metric. (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
xpsds.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
xpsds.x | ⊢ 𝑋 = (Base‘𝑅) |
xpsds.y | ⊢ 𝑌 = (Base‘𝑆) |
xpsds.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
xpsds.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
xpsds.p | ⊢ 𝑃 = (dist‘𝑇) |
xpsds.m | ⊢ 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋)) |
xpsds.n | ⊢ 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌)) |
xpsds.3 | ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) |
xpsds.4 | ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) |
Ref | Expression |
---|---|
xpsxmet | ⊢ (𝜑 → 𝑃 ∈ (∞Met‘(𝑋 × 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsds.t | . . 3 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
2 | xpsds.x | . . 3 ⊢ 𝑋 = (Base‘𝑅) | |
3 | xpsds.y | . . 3 ⊢ 𝑌 = (Base‘𝑆) | |
4 | xpsds.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
5 | xpsds.2 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
6 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
7 | eqid 2731 | . . 3 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
8 | eqid 2731 | . . 3 ⊢ ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) = ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 17523 | . 2 ⊢ (𝜑 → 𝑇 = (◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsrnbas 17524 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) |
11 | 6 | xpsff1o2 17522 | . . 3 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
12 | f1ocnv 6845 | . . 3 ⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–1-1-onto→(𝑋 × 𝑌)) | |
13 | 11, 12 | mp1i 13 | . 2 ⊢ (𝜑 → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–1-1-onto→(𝑋 × 𝑌)) |
14 | ovexd 7447 | . 2 ⊢ (𝜑 → ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) ∈ V) | |
15 | eqid 2731 | . 2 ⊢ ((dist‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) ↾ (ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) × ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}))) = ((dist‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) ↾ (ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) × ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}))) | |
16 | xpsds.p | . 2 ⊢ 𝑃 = (dist‘𝑇) | |
17 | xpsds.m | . . . 4 ⊢ 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋)) | |
18 | xpsds.n | . . . 4 ⊢ 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌)) | |
19 | xpsds.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) | |
20 | xpsds.4 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) | |
21 | 1, 2, 3, 4, 5, 16, 17, 18, 19, 20 | xpsxmetlem 24118 | . . 3 ⊢ (𝜑 → (dist‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) ∈ (∞Met‘ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}))) |
22 | ssid 4004 | . . 3 ⊢ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) ⊆ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
23 | xmetres2 24100 | . . 3 ⊢ (((dist‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) ∈ (∞Met‘ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})) ∧ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) ⊆ ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})) → ((dist‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) ↾ (ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) × ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}))) ∈ (∞Met‘ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}))) | |
24 | 21, 22, 23 | sylancl 585 | . 2 ⊢ (𝜑 → ((dist‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) ↾ (ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) × ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}))) ∈ (∞Met‘ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}))) |
25 | 9, 10, 13, 14, 15, 16, 24 | imasf1oxmet 24114 | 1 ⊢ (𝜑 → 𝑃 ∈ (∞Met‘(𝑋 × 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ⊆ wss 3948 ∅c0 4322 {cpr 4630 〈cop 4634 × cxp 5674 ◡ccnv 5675 ran crn 5677 ↾ cres 5678 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7412 ∈ cmpo 7414 1oc1o 8465 Basecbs 17151 Scalarcsca 17207 distcds 17213 Xscprds 17398 ×s cxps 17459 ∞Metcxmet 21133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-er 8709 df-map 8828 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-sup 9443 df-inf 9444 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-icc 13338 df-fz 13492 df-fzo 13635 df-seq 13974 df-hash 14298 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-hom 17228 df-cco 17229 df-0g 17394 df-gsum 17395 df-prds 17400 df-xrs 17455 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-submnd 18709 df-mulg 18991 df-cntz 19226 df-cmn 19695 df-xmet 21141 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |