| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsms | Structured version Visualization version GIF version | ||
| Description: A binary product of metric spaces is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpsms.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
| Ref | Expression |
|---|---|
| xpsms | ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 𝑇 ∈ MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsms.t | . . 3 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
| 2 | eqid 2733 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2733 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 4 | simpl 482 | . . 3 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 𝑅 ∈ MetSp) | |
| 5 | simpr 484 | . . 3 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 𝑆 ∈ MetSp) | |
| 6 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
| 7 | eqid 2733 | . . 3 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 8 | eqid 2733 | . . 3 ⊢ ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) = ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 17478 | . 2 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 𝑇 = (◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsrnbas 17479 | . 2 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) |
| 11 | 6 | xpsff1o2 17477 | . . 3 ⊢ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
| 12 | f1ocnv 6782 | . . 3 ⊢ ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–1-1-onto→((Base‘𝑅) × (Base‘𝑆))) | |
| 13 | 11, 12 | mp1i 13 | . 2 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–1-1-onto→((Base‘𝑅) × (Base‘𝑆))) |
| 14 | fvexd 6845 | . . 3 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → (Scalar‘𝑅) ∈ V) | |
| 15 | 2onn 8565 | . . . 4 ⊢ 2o ∈ ω | |
| 16 | nnfi 9086 | . . . 4 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
| 17 | 15, 16 | mp1i 13 | . . 3 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 2o ∈ Fin) |
| 18 | xpscf 17473 | . . . 4 ⊢ ({〈∅, 𝑅〉, 〈1o, 𝑆〉}:2o⟶MetSp ↔ (𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp)) | |
| 19 | 18 | biimpri 228 | . . 3 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → {〈∅, 𝑅〉, 〈1o, 𝑆〉}:2o⟶MetSp) |
| 20 | 8 | prdsms 24449 | . . 3 ⊢ (((Scalar‘𝑅) ∈ V ∧ 2o ∈ Fin ∧ {〈∅, 𝑅〉, 〈1o, 𝑆〉}:2o⟶MetSp) → ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) ∈ MetSp) |
| 21 | 14, 17, 19, 20 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) ∈ MetSp) |
| 22 | 9, 10, 13, 21 | imasf1oms 24408 | 1 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 𝑇 ∈ MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 {cpr 4579 〈cop 4583 × cxp 5619 ◡ccnv 5620 ran crn 5622 ⟶wf 6484 –1-1-onto→wf1o 6487 ‘cfv 6488 (class class class)co 7354 ∈ cmpo 7356 ωcom 7804 1oc1o 8386 2oc2o 8387 Fincfn 8877 Basecbs 17124 Scalarcsca 17168 Xscprds 17353 ×s cxps 17414 MetSpcms 24236 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-fi 9304 df-sup 9335 df-inf 9336 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-q 12851 df-rp 12895 df-xneg 13015 df-xadd 13016 df-xmul 13017 df-icc 13256 df-fz 13412 df-fzo 13559 df-seq 13913 df-hash 14242 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-hom 17189 df-cco 17190 df-rest 17330 df-topn 17331 df-0g 17349 df-gsum 17350 df-topgen 17351 df-pt 17352 df-prds 17355 df-xrs 17410 df-qtop 17415 df-imas 17416 df-xps 17418 df-mre 17492 df-mrc 17493 df-acs 17495 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-submnd 18696 df-mulg 18985 df-cntz 19233 df-cmn 19698 df-psmet 21287 df-xmet 21288 df-met 21289 df-bl 21290 df-mopn 21291 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22864 df-xms 24238 df-ms 24239 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |