Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsms Structured version   Visualization version   GIF version

Theorem xpsms 23142
 Description: A binary product of metric spaces is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypothesis
Ref Expression
xpsms.t 𝑇 = (𝑅 ×s 𝑆)
Assertion
Ref Expression
xpsms ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 𝑇 ∈ MetSp)

Proof of Theorem xpsms
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsms.t . . 3 𝑇 = (𝑅 ×s 𝑆)
2 eqid 2798 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2798 . . 3 (Base‘𝑆) = (Base‘𝑆)
4 simpl 486 . . 3 ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 𝑅 ∈ MetSp)
5 simpr 488 . . 3 ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 𝑆 ∈ MetSp)
6 eqid 2798 . . 3 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
7 eqid 2798 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
8 eqid 2798 . . 3 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
91, 2, 3, 4, 5, 6, 7, 8xpsval 16835 . 2 ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 𝑇 = ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
101, 2, 3, 4, 5, 6, 7, 8xpsrnbas 16836 . 2 ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
116xpsff1o2 16834 . . 3 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
12 f1ocnv 6602 . . 3 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→((Base‘𝑅) × (Base‘𝑆)))
1311, 12mp1i 13 . 2 ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→((Base‘𝑅) × (Base‘𝑆)))
14 fvexd 6660 . . 3 ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → (Scalar‘𝑅) ∈ V)
15 2onn 8249 . . . 4 2o ∈ ω
16 nnfi 8696 . . . 4 (2o ∈ ω → 2o ∈ Fin)
1715, 16mp1i 13 . . 3 ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 2o ∈ Fin)
18 xpscf 16830 . . . 4 ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶MetSp ↔ (𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp))
1918biimpri 231 . . 3 ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶MetSp)
208prdsms 23138 . . 3 (((Scalar‘𝑅) ∈ V ∧ 2o ∈ Fin ∧ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶MetSp) → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ MetSp)
2114, 17, 19, 20syl3anc 1368 . 2 ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ MetSp)
229, 10, 13, 21imasf1oms 23097 1 ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 𝑇 ∈ MetSp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  Vcvv 3441  ∅c0 4243  {cpr 4527  ⟨cop 4531   × cxp 5517  ◡ccnv 5518  ran crn 5520  ⟶wf 6320  –1-1-onto→wf1o 6323  ‘cfv 6324  (class class class)co 7135   ∈ cmpo 7137  ωcom 7560  1oc1o 8078  2oc2o 8079  Fincfn 8492  Basecbs 16475  Scalarcsca 16560  Xscprds 16711   ×s cxps 16771  MetSpcms 22925 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-xms 22927  df-ms 22928 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator