![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsms | Structured version Visualization version GIF version |
Description: A binary product of metric spaces is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
xpsms.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
Ref | Expression |
---|---|
xpsms | ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 𝑇 ∈ MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsms.t | . . 3 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
2 | eqid 2724 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2724 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
4 | simpl 482 | . . 3 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 𝑅 ∈ MetSp) | |
5 | simpr 484 | . . 3 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 𝑆 ∈ MetSp) | |
6 | eqid 2724 | . . 3 ⊢ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
7 | eqid 2724 | . . 3 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
8 | eqid 2724 | . . 3 ⊢ ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) = ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 17517 | . 2 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 𝑇 = (◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsrnbas 17518 | . 2 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) |
11 | 6 | xpsff1o2 17516 | . . 3 ⊢ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
12 | f1ocnv 6836 | . . 3 ⊢ ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–1-1-onto→((Base‘𝑅) × (Base‘𝑆))) | |
13 | 11, 12 | mp1i 13 | . 2 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–1-1-onto→((Base‘𝑅) × (Base‘𝑆))) |
14 | fvexd 6897 | . . 3 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → (Scalar‘𝑅) ∈ V) | |
15 | 2onn 8638 | . . . 4 ⊢ 2o ∈ ω | |
16 | nnfi 9164 | . . . 4 ⊢ (2o ∈ ω → 2o ∈ Fin) | |
17 | 15, 16 | mp1i 13 | . . 3 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 2o ∈ Fin) |
18 | xpscf 17512 | . . . 4 ⊢ ({〈∅, 𝑅〉, 〈1o, 𝑆〉}:2o⟶MetSp ↔ (𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp)) | |
19 | 18 | biimpri 227 | . . 3 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → {〈∅, 𝑅〉, 〈1o, 𝑆〉}:2o⟶MetSp) |
20 | 8 | prdsms 24364 | . . 3 ⊢ (((Scalar‘𝑅) ∈ V ∧ 2o ∈ Fin ∧ {〈∅, 𝑅〉, 〈1o, 𝑆〉}:2o⟶MetSp) → ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) ∈ MetSp) |
21 | 14, 17, 19, 20 | syl3anc 1368 | . 2 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) ∈ MetSp) |
22 | 9, 10, 13, 21 | imasf1oms 24323 | 1 ⊢ ((𝑅 ∈ MetSp ∧ 𝑆 ∈ MetSp) → 𝑇 ∈ MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∅c0 4315 {cpr 4623 〈cop 4627 × cxp 5665 ◡ccnv 5666 ran crn 5668 ⟶wf 6530 –1-1-onto→wf1o 6533 ‘cfv 6534 (class class class)co 7402 ∈ cmpo 7404 ωcom 7849 1oc1o 8455 2oc2o 8456 Fincfn 8936 Basecbs 17145 Scalarcsca 17201 Xscprds 17392 ×s cxps 17453 MetSpcms 24148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8700 df-map 8819 df-ixp 8889 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-fi 9403 df-sup 9434 df-inf 9435 df-oi 9502 df-card 9931 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-div 11870 df-nn 12211 df-2 12273 df-3 12274 df-4 12275 df-5 12276 df-6 12277 df-7 12278 df-8 12279 df-9 12280 df-n0 12471 df-z 12557 df-dec 12676 df-uz 12821 df-q 12931 df-rp 12973 df-xneg 13090 df-xadd 13091 df-xmul 13092 df-icc 13329 df-fz 13483 df-fzo 13626 df-seq 13965 df-hash 14289 df-struct 17081 df-sets 17098 df-slot 17116 df-ndx 17128 df-base 17146 df-ress 17175 df-plusg 17211 df-mulr 17212 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ds 17220 df-hom 17222 df-cco 17223 df-rest 17369 df-topn 17370 df-0g 17388 df-gsum 17389 df-topgen 17390 df-pt 17391 df-prds 17394 df-xrs 17449 df-qtop 17454 df-imas 17455 df-xps 17457 df-mre 17531 df-mrc 17532 df-acs 17534 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-mulg 18988 df-cntz 19225 df-cmn 19694 df-psmet 21222 df-xmet 21223 df-met 21224 df-bl 21225 df-mopn 21226 df-top 22720 df-topon 22737 df-topsp 22759 df-bases 22773 df-xms 24150 df-ms 24151 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |