| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpsbas | Structured version Visualization version GIF version | ||
| Description: The base set of the binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| xpsval.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
| xpsval.x | ⊢ 𝑋 = (Base‘𝑅) |
| xpsval.y | ⊢ 𝑌 = (Base‘𝑆) |
| xpsval.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| xpsval.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| xpsbas | ⊢ (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsval.t | . . 3 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
| 2 | xpsval.x | . . 3 ⊢ 𝑋 = (Base‘𝑅) | |
| 3 | xpsval.y | . . 3 ⊢ 𝑌 = (Base‘𝑆) | |
| 4 | xpsval.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 5 | xpsval.2 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
| 6 | eqid 2734 | . . 3 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
| 7 | eqid 2734 | . . 3 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 8 | eqid 2734 | . . 3 ⊢ ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) = ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 17591 | . 2 ⊢ (𝜑 → 𝑇 = (◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsrnbas 17592 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) |
| 11 | 6 | xpsff1o2 17590 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
| 12 | f1ocnv 6841 | . . . 4 ⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–1-1-onto→(𝑋 × 𝑌)) | |
| 13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–1-1-onto→(𝑋 × 𝑌) |
| 14 | f1ofo 6836 | . . 3 ⊢ (◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–1-1-onto→(𝑋 × 𝑌) → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–onto→(𝑋 × 𝑌)) | |
| 15 | 13, 14 | mp1i 13 | . 2 ⊢ (𝜑 → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–onto→(𝑋 × 𝑌)) |
| 16 | ovexd 7449 | . 2 ⊢ (𝜑 → ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) ∈ V) | |
| 17 | 9, 10, 15, 16 | imasbas 17533 | 1 ⊢ (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ∅c0 4315 {cpr 4610 〈cop 4614 × cxp 5665 ◡ccnv 5666 ran crn 5668 –onto→wfo 6540 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 1oc1o 8482 Basecbs 17230 Scalarcsca 17280 Xscprds 17466 ×s cxps 17527 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-er 8728 df-map 8851 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-fz 13531 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-plusg 17290 df-mulr 17291 df-sca 17293 df-vsca 17294 df-ip 17295 df-tset 17296 df-ple 17297 df-ds 17299 df-hom 17301 df-cco 17302 df-prds 17468 df-imas 17529 df-xps 17531 |
| This theorem is referenced by: xpsmnd0 18765 xpsinv 19052 xpsgrpsub 19053 xpsring1d 20303 rngqipbas 21272 pzriprnglem2 21460 xpsdsfn2 24352 tmsxps 24512 |
| Copyright terms: Public domain | W3C validator |