![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsbas | Structured version Visualization version GIF version |
Description: The base set of the binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
Ref | Expression |
---|---|
xpsval.t | β’ π = (π Γs π) |
xpsval.x | β’ π = (Baseβπ ) |
xpsval.y | β’ π = (Baseβπ) |
xpsval.1 | β’ (π β π β π) |
xpsval.2 | β’ (π β π β π) |
Ref | Expression |
---|---|
xpsbas | β’ (π β (π Γ π) = (Baseβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsval.t | . . 3 β’ π = (π Γs π) | |
2 | xpsval.x | . . 3 β’ π = (Baseβπ ) | |
3 | xpsval.y | . . 3 β’ π = (Baseβπ) | |
4 | xpsval.1 | . . 3 β’ (π β π β π) | |
5 | xpsval.2 | . . 3 β’ (π β π β π) | |
6 | eqid 2733 | . . 3 β’ (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}) = (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}) | |
7 | eqid 2733 | . . 3 β’ (Scalarβπ ) = (Scalarβπ ) | |
8 | eqid 2733 | . . 3 β’ ((Scalarβπ )Xs{β¨β , π β©, β¨1o, πβ©}) = ((Scalarβπ )Xs{β¨β , π β©, β¨1o, πβ©}) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 17513 | . 2 β’ (π β π = (β‘(π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}) βs ((Scalarβπ )Xs{β¨β , π β©, β¨1o, πβ©}))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsrnbas 17514 | . 2 β’ (π β ran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}) = (Baseβ((Scalarβπ )Xs{β¨β , π β©, β¨1o, πβ©}))) |
11 | 6 | xpsff1o2 17512 | . . . 4 β’ (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):(π Γ π)β1-1-ontoβran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}) |
12 | f1ocnv 6843 | . . . 4 β’ ((π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):(π Γ π)β1-1-ontoβran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}) β β‘(π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©})β1-1-ontoβ(π Γ π)) | |
13 | 11, 12 | ax-mp 5 | . . 3 β’ β‘(π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©})β1-1-ontoβ(π Γ π) |
14 | f1ofo 6838 | . . 3 β’ (β‘(π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©})β1-1-ontoβ(π Γ π) β β‘(π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©})βontoβ(π Γ π)) | |
15 | 13, 14 | mp1i 13 | . 2 β’ (π β β‘(π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©}):ran (π₯ β π, π¦ β π β¦ {β¨β , π₯β©, β¨1o, π¦β©})βontoβ(π Γ π)) |
16 | ovexd 7441 | . 2 β’ (π β ((Scalarβπ )Xs{β¨β , π β©, β¨1o, πβ©}) β V) | |
17 | 9, 10, 15, 16 | imasbas 17455 | 1 β’ (π β (π Γ π) = (Baseβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 Vcvv 3475 β c0 4322 {cpr 4630 β¨cop 4634 Γ cxp 5674 β‘ccnv 5675 ran crn 5677 βontoβwfo 6539 β1-1-ontoβwf1o 6540 βcfv 6541 (class class class)co 7406 β cmpo 7408 1oc1o 8456 Basecbs 17141 Scalarcsca 17197 Xscprds 17388 Γs cxps 17449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-1st 7972 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-1o 8463 df-2o 8464 df-er 8700 df-map 8819 df-ixp 8889 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-inf 9435 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-fz 13482 df-struct 17077 df-slot 17112 df-ndx 17124 df-base 17142 df-plusg 17207 df-mulr 17208 df-sca 17210 df-vsca 17211 df-ip 17212 df-tset 17213 df-ple 17214 df-ds 17216 df-hom 17218 df-cco 17219 df-prds 17390 df-imas 17451 df-xps 17453 |
This theorem is referenced by: xpsmnd0 18663 xpsdsfn2 23876 tmsxps 24037 rngqipbas 46761 |
Copyright terms: Public domain | W3C validator |