![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpsbas | Structured version Visualization version GIF version |
Description: The base set of the binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.) |
Ref | Expression |
---|---|
xpsval.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
xpsval.x | ⊢ 𝑋 = (Base‘𝑅) |
xpsval.y | ⊢ 𝑌 = (Base‘𝑆) |
xpsval.1 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
xpsval.2 | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
Ref | Expression |
---|---|
xpsbas | ⊢ (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsval.t | . . 3 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
2 | xpsval.x | . . 3 ⊢ 𝑋 = (Base‘𝑅) | |
3 | xpsval.y | . . 3 ⊢ 𝑌 = (Base‘𝑆) | |
4 | xpsval.1 | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
5 | xpsval.2 | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
6 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) | |
7 | eqid 2736 | . . 3 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
8 | eqid 2736 | . . 3 ⊢ ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) = ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 17623 | . 2 ⊢ (𝜑 → 𝑇 = (◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) “s ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsrnbas 17624 | . 2 ⊢ (𝜑 → ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (Base‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}))) |
11 | 6 | xpsff1o2 17622 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
12 | f1ocnv 6865 | . . . 4 ⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–1-1-onto→(𝑋 × 𝑌)) | |
13 | 11, 12 | ax-mp 5 | . . 3 ⊢ ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–1-1-onto→(𝑋 × 𝑌) |
14 | f1ofo 6860 | . . 3 ⊢ (◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–1-1-onto→(𝑋 × 𝑌) → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–onto→(𝑋 × 𝑌)) | |
15 | 13, 14 | mp1i 13 | . 2 ⊢ (𝜑 → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}):ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})–onto→(𝑋 × 𝑌)) |
16 | ovexd 7470 | . 2 ⊢ (𝜑 → ((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) ∈ V) | |
17 | 9, 10, 15, 16 | imasbas 17565 | 1 ⊢ (𝜑 → (𝑋 × 𝑌) = (Base‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2107 Vcvv 3479 ∅c0 4340 {cpr 4634 〈cop 4638 × cxp 5688 ◡ccnv 5689 ran crn 5691 –onto→wfo 6564 –1-1-onto→wf1o 6565 ‘cfv 6566 (class class class)co 7435 ∈ cmpo 7437 1oc1o 8504 Basecbs 17251 Scalarcsca 17307 Xscprds 17498 ×s cxps 17559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-2o 8512 df-er 8750 df-map 8873 df-ixp 8943 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-sup 9486 df-inf 9487 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-7 12338 df-8 12339 df-9 12340 df-n0 12531 df-z 12618 df-dec 12738 df-uz 12883 df-fz 13551 df-struct 17187 df-slot 17222 df-ndx 17234 df-base 17252 df-plusg 17317 df-mulr 17318 df-sca 17320 df-vsca 17321 df-ip 17322 df-tset 17323 df-ple 17324 df-ds 17326 df-hom 17328 df-cco 17329 df-prds 17500 df-imas 17561 df-xps 17563 |
This theorem is referenced by: xpsmnd0 18810 xpsinv 19097 xpsgrpsub 19098 xpsring1d 20353 rngqipbas 21329 pzriprnglem2 21517 xpsdsfn2 24410 tmsxps 24571 |
Copyright terms: Public domain | W3C validator |