| Step | Hyp | Ref
| Expression |
| 1 | | initopropd.1 |
. . . 4
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 2 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 3 | | initopropd.2 |
. . . 4
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝐷)) |
| 4 | 3 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) →
(compf‘𝐶) = (compf‘𝐷)) |
| 5 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → ¬ 𝐶 ∈ V) |
| 6 | 2, 4, 5 | initopropdlem 48963 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → (InitO‘𝐶) = (InitO‘𝐷)) |
| 7 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 8 | 7 | eqcomd 2740 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf
‘𝐷) =
(Homf ‘𝐶)) |
| 9 | 3 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐷 ∈ V) →
(compf‘𝐶) = (compf‘𝐷)) |
| 10 | 9 | eqcomd 2740 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐷 ∈ V) →
(compf‘𝐷) = (compf‘𝐶)) |
| 11 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐷 ∈ V) → ¬ 𝐷 ∈ V) |
| 12 | 8, 10, 11 | initopropdlem 48963 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐷 ∈ V) → (InitO‘𝐷) = (InitO‘𝐶)) |
| 13 | 12 | eqcomd 2740 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐷 ∈ V) → (InitO‘𝐶) = (InitO‘𝐷)) |
| 14 | 1 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 15 | 14 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
| 16 | | eqid 2734 |
. . . . . . . . . . . . . 14
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 17 | | eqid 2734 |
. . . . . . . . . . . . . 14
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 18 | | eqidd 2735 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Base‘𝐶) = (Base‘𝐶)) |
| 19 | 15 | homfeqbas 17693 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Base‘𝐶) = (Base‘𝐷)) |
| 20 | 16, 17, 18, 19 | homfeq 17691 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((Homf
‘𝐶) =
(Homf ‘𝐷) ↔ ∀𝑎 ∈ (Base‘𝐶)∀𝑏 ∈ (Base‘𝐶)(𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏))) |
| 21 | 15, 20 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ∀𝑎 ∈ (Base‘𝐶)∀𝑏 ∈ (Base‘𝐶)(𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏)) |
| 22 | 21 | r19.21bi 3232 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) → ∀𝑏 ∈ (Base‘𝐶)(𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏)) |
| 23 | 22 | r19.21bi 3232 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏)) |
| 24 | 23 | eleq2d 2819 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (ℎ ∈ (𝑎(Hom ‘𝐶)𝑏) ↔ ℎ ∈ (𝑎(Hom ‘𝐷)𝑏))) |
| 25 | 24 | eubidv 2584 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (∃!ℎ ℎ ∈ (𝑎(Hom ‘𝐶)𝑏) ↔ ∃!ℎ ℎ ∈ (𝑎(Hom ‘𝐷)𝑏))) |
| 26 | 25 | ralbidva 3159 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) → (∀𝑏 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝐶)𝑏) ↔ ∀𝑏 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝐷)𝑏))) |
| 27 | 26 | pm5.32da 579 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝐶)𝑏)) ↔ (𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝐷)𝑏)))) |
| 28 | 19 | eleq2d 2819 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (𝑎 ∈ (Base‘𝐶) ↔ 𝑎 ∈ (Base‘𝐷))) |
| 29 | 19 | raleqdv 3303 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (∀𝑏 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝐷)𝑏) ↔ ∀𝑏 ∈ (Base‘𝐷)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝐷)𝑏))) |
| 30 | 28, 29 | anbi12d 632 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝐷)𝑏)) ↔ (𝑎 ∈ (Base‘𝐷) ∧ ∀𝑏 ∈ (Base‘𝐷)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝐷)𝑏)))) |
| 31 | 27, 30 | bitrd 279 |
. . . . 5
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝐶)𝑏)) ↔ (𝑎 ∈ (Base‘𝐷) ∧ ∀𝑏 ∈ (Base‘𝐷)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝐷)𝑏)))) |
| 32 | 31 | rabbidva2 3415 |
. . . 4
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → {𝑎 ∈ (Base‘𝐶) ∣ ∀𝑏 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝐶)𝑏)} = {𝑎 ∈ (Base‘𝐷) ∣ ∀𝑏 ∈ (Base‘𝐷)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝐷)𝑏)}) |
| 33 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐶 ∈ Cat) |
| 34 | | eqid 2734 |
. . . . 5
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 35 | 33, 34, 16 | initoval 17991 |
. . . 4
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (InitO‘𝐶) = {𝑎 ∈ (Base‘𝐶) ∣ ∀𝑏 ∈ (Base‘𝐶)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝐶)𝑏)}) |
| 36 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) →
(compf‘𝐶) = (compf‘𝐷)) |
| 37 | | simprl 770 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐶 ∈ V) |
| 38 | | simprr 772 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐷 ∈ V) |
| 39 | 14, 36, 37, 38 | catpropd 17706 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat)) |
| 40 | 39 | biimpa 476 |
. . . . 5
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐷 ∈ Cat) |
| 41 | | eqid 2734 |
. . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 42 | 40, 41, 17 | initoval 17991 |
. . . 4
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (InitO‘𝐷) = {𝑎 ∈ (Base‘𝐷) ∣ ∀𝑏 ∈ (Base‘𝐷)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝐷)𝑏)}) |
| 43 | 32, 35, 42 | 3eqtr4d 2779 |
. . 3
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (InitO‘𝐶) = (InitO‘𝐷)) |
| 44 | 39 | pm5.32i 574 |
. . . 4
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ↔ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat)) |
| 45 | 44, 43 | sylbir 235 |
. . 3
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat) → (InitO‘𝐶) = (InitO‘𝐷)) |
| 46 | | initofn 17985 |
. . . . . . . 8
⊢ InitO Fn
Cat |
| 47 | 46 | fndmi 6638 |
. . . . . . 7
⊢ dom InitO
= Cat |
| 48 | 47 | eleq2i 2825 |
. . . . . 6
⊢ (𝐶 ∈ dom InitO ↔ 𝐶 ∈ Cat) |
| 49 | | ndmfv 6907 |
. . . . . 6
⊢ (¬
𝐶 ∈ dom InitO →
(InitO‘𝐶) =
∅) |
| 50 | 48, 49 | sylnbir 331 |
. . . . 5
⊢ (¬
𝐶 ∈ Cat →
(InitO‘𝐶) =
∅) |
| 51 | 50 | ad2antrl 728 |
. . . 4
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (InitO‘𝐶) = ∅) |
| 52 | 47 | eleq2i 2825 |
. . . . . 6
⊢ (𝐷 ∈ dom InitO ↔ 𝐷 ∈ Cat) |
| 53 | | ndmfv 6907 |
. . . . . 6
⊢ (¬
𝐷 ∈ dom InitO →
(InitO‘𝐷) =
∅) |
| 54 | 52, 53 | sylnbir 331 |
. . . . 5
⊢ (¬
𝐷 ∈ Cat →
(InitO‘𝐷) =
∅) |
| 55 | 54 | ad2antll 729 |
. . . 4
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (InitO‘𝐷) = ∅) |
| 56 | 51, 55 | eqtr4d 2772 |
. . 3
⊢ (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (InitO‘𝐶) = (InitO‘𝐷)) |
| 57 | 43, 45, 56 | pm2.61ddan 813 |
. 2
⊢ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (InitO‘𝐶) = (InitO‘𝐷)) |
| 58 | 6, 13, 57 | pm2.61dda 814 |
1
⊢ (𝜑 → (InitO‘𝐶) = (InitO‘𝐷)) |