Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  initopropd Structured version   Visualization version   GIF version

Theorem initopropd 49214
Description: Two structures with the same base, hom-sets and composition operation have the same initial objects. (Contributed by Zhi Wang, 23-Oct-2025.)
Hypotheses
Ref Expression
initopropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
initopropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
initopropd (𝜑 → (InitO‘𝐶) = (InitO‘𝐷))

Proof of Theorem initopropd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 initopropd.1 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
21adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (Homf𝐶) = (Homf𝐷))
3 initopropd.2 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
43adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (compf𝐶) = (compf𝐷))
5 simpr 484 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → ¬ 𝐶 ∈ V)
62, 4, 5initopropdlem 49211 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (InitO‘𝐶) = (InitO‘𝐷))
71adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf𝐶) = (Homf𝐷))
87eqcomd 2736 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf𝐷) = (Homf𝐶))
93adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (compf𝐶) = (compf𝐷))
109eqcomd 2736 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (compf𝐷) = (compf𝐶))
11 simpr 484 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → ¬ 𝐷 ∈ V)
128, 10, 11initopropdlem 49211 . . 3 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (InitO‘𝐷) = (InitO‘𝐶))
1312eqcomd 2736 . 2 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (InitO‘𝐶) = (InitO‘𝐷))
141adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (Homf𝐶) = (Homf𝐷))
1514adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Homf𝐶) = (Homf𝐷))
16 eqid 2730 . . . . . . . . . . . . . 14 (Hom ‘𝐶) = (Hom ‘𝐶)
17 eqid 2730 . . . . . . . . . . . . . 14 (Hom ‘𝐷) = (Hom ‘𝐷)
18 eqidd 2731 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Base‘𝐶) = (Base‘𝐶))
1915homfeqbas 17663 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Base‘𝐶) = (Base‘𝐷))
2016, 17, 18, 19homfeq 17661 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((Homf𝐶) = (Homf𝐷) ↔ ∀𝑎 ∈ (Base‘𝐶)∀𝑏 ∈ (Base‘𝐶)(𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏)))
2115, 20mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ∀𝑎 ∈ (Base‘𝐶)∀𝑏 ∈ (Base‘𝐶)(𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏))
2221r19.21bi 3230 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) → ∀𝑏 ∈ (Base‘𝐶)(𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏))
2322r19.21bi 3230 . . . . . . . . . 10 (((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏))
2423eleq2d 2815 . . . . . . . . 9 (((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → ( ∈ (𝑎(Hom ‘𝐶)𝑏) ↔ ∈ (𝑎(Hom ‘𝐷)𝑏)))
2524eubidv 2580 . . . . . . . 8 (((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (∃! ∈ (𝑎(Hom ‘𝐶)𝑏) ↔ ∃! ∈ (𝑎(Hom ‘𝐷)𝑏)))
2625ralbidva 3155 . . . . . . 7 ((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) → (∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐶)𝑏) ↔ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐷)𝑏)))
2726pm5.32da 579 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐶)𝑏)) ↔ (𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐷)𝑏))))
2819eleq2d 2815 . . . . . . 7 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (𝑎 ∈ (Base‘𝐶) ↔ 𝑎 ∈ (Base‘𝐷)))
2919raleqdv 3301 . . . . . . 7 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐷)𝑏) ↔ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑎(Hom ‘𝐷)𝑏)))
3028, 29anbi12d 632 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐷)𝑏)) ↔ (𝑎 ∈ (Base‘𝐷) ∧ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑎(Hom ‘𝐷)𝑏))))
3127, 30bitrd 279 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐶)𝑏)) ↔ (𝑎 ∈ (Base‘𝐷) ∧ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑎(Hom ‘𝐷)𝑏))))
3231rabbidva2 3410 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → {𝑎 ∈ (Base‘𝐶) ∣ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐶)𝑏)} = {𝑎 ∈ (Base‘𝐷) ∣ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑎(Hom ‘𝐷)𝑏)})
33 simpr 484 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐶 ∈ Cat)
34 eqid 2730 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
3533, 34, 16initoval 17961 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (InitO‘𝐶) = {𝑎 ∈ (Base‘𝐶) ∣ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐶)𝑏)})
363adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (compf𝐶) = (compf𝐷))
37 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐶 ∈ V)
38 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐷 ∈ V)
3914, 36, 37, 38catpropd 17676 . . . . . 6 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
4039biimpa 476 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐷 ∈ Cat)
41 eqid 2730 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
4240, 41, 17initoval 17961 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (InitO‘𝐷) = {𝑎 ∈ (Base‘𝐷) ∣ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑎(Hom ‘𝐷)𝑏)})
4332, 35, 423eqtr4d 2775 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (InitO‘𝐶) = (InitO‘𝐷))
4439pm5.32i 574 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ↔ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat))
4544, 43sylbir 235 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat) → (InitO‘𝐶) = (InitO‘𝐷))
46 initofn 17955 . . . . . . . 8 InitO Fn Cat
4746fndmi 6624 . . . . . . 7 dom InitO = Cat
4847eleq2i 2821 . . . . . 6 (𝐶 ∈ dom InitO ↔ 𝐶 ∈ Cat)
49 ndmfv 6895 . . . . . 6 𝐶 ∈ dom InitO → (InitO‘𝐶) = ∅)
5048, 49sylnbir 331 . . . . 5 𝐶 ∈ Cat → (InitO‘𝐶) = ∅)
5150ad2antrl 728 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (InitO‘𝐶) = ∅)
5247eleq2i 2821 . . . . . 6 (𝐷 ∈ dom InitO ↔ 𝐷 ∈ Cat)
53 ndmfv 6895 . . . . . 6 𝐷 ∈ dom InitO → (InitO‘𝐷) = ∅)
5452, 53sylnbir 331 . . . . 5 𝐷 ∈ Cat → (InitO‘𝐷) = ∅)
5554ad2antll 729 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (InitO‘𝐷) = ∅)
5651, 55eqtr4d 2768 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (InitO‘𝐶) = (InitO‘𝐷))
5743, 45, 56pm2.61ddan 813 . 2 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (InitO‘𝐶) = (InitO‘𝐷))
586, 13, 57pm2.61dda 814 1 (𝜑 → (InitO‘𝐶) = (InitO‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  ∃!weu 2562  wral 3045  {crab 3408  Vcvv 3450  c0 4298  dom cdm 5640  cfv 6513  (class class class)co 7389  Basecbs 17185  Hom chom 17237  Catccat 17631  Homf chomf 17633  compfccomf 17634  InitOcinito 17949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-cat 17635  df-homf 17637  df-comf 17638  df-inito 17952
This theorem is referenced by:  zeroopropd  49216
  Copyright terms: Public domain W3C validator