Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  initopropd Structured version   Visualization version   GIF version

Theorem initopropd 49228
Description: Two structures with the same base, hom-sets and composition operation have the same initial objects. (Contributed by Zhi Wang, 23-Oct-2025.)
Hypotheses
Ref Expression
initopropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
initopropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
initopropd (𝜑 → (InitO‘𝐶) = (InitO‘𝐷))

Proof of Theorem initopropd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 initopropd.1 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
21adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (Homf𝐶) = (Homf𝐷))
3 initopropd.2 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
43adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (compf𝐶) = (compf𝐷))
5 simpr 484 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → ¬ 𝐶 ∈ V)
62, 4, 5initopropdlem 49225 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (InitO‘𝐶) = (InitO‘𝐷))
71adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf𝐶) = (Homf𝐷))
87eqcomd 2735 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf𝐷) = (Homf𝐶))
93adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (compf𝐶) = (compf𝐷))
109eqcomd 2735 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (compf𝐷) = (compf𝐶))
11 simpr 484 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → ¬ 𝐷 ∈ V)
128, 10, 11initopropdlem 49225 . . 3 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (InitO‘𝐷) = (InitO‘𝐶))
1312eqcomd 2735 . 2 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (InitO‘𝐶) = (InitO‘𝐷))
141adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (Homf𝐶) = (Homf𝐷))
1514adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Homf𝐶) = (Homf𝐷))
16 eqid 2729 . . . . . . . . . . . . . 14 (Hom ‘𝐶) = (Hom ‘𝐶)
17 eqid 2729 . . . . . . . . . . . . . 14 (Hom ‘𝐷) = (Hom ‘𝐷)
18 eqidd 2730 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Base‘𝐶) = (Base‘𝐶))
1915homfeqbas 17602 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Base‘𝐶) = (Base‘𝐷))
2016, 17, 18, 19homfeq 17600 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((Homf𝐶) = (Homf𝐷) ↔ ∀𝑎 ∈ (Base‘𝐶)∀𝑏 ∈ (Base‘𝐶)(𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏)))
2115, 20mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ∀𝑎 ∈ (Base‘𝐶)∀𝑏 ∈ (Base‘𝐶)(𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏))
2221r19.21bi 3221 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) → ∀𝑏 ∈ (Base‘𝐶)(𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏))
2322r19.21bi 3221 . . . . . . . . . 10 (((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏))
2423eleq2d 2814 . . . . . . . . 9 (((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → ( ∈ (𝑎(Hom ‘𝐶)𝑏) ↔ ∈ (𝑎(Hom ‘𝐷)𝑏)))
2524eubidv 2579 . . . . . . . 8 (((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (∃! ∈ (𝑎(Hom ‘𝐶)𝑏) ↔ ∃! ∈ (𝑎(Hom ‘𝐷)𝑏)))
2625ralbidva 3150 . . . . . . 7 ((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) → (∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐶)𝑏) ↔ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐷)𝑏)))
2726pm5.32da 579 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐶)𝑏)) ↔ (𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐷)𝑏))))
2819eleq2d 2814 . . . . . . 7 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (𝑎 ∈ (Base‘𝐶) ↔ 𝑎 ∈ (Base‘𝐷)))
2919raleqdv 3289 . . . . . . 7 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐷)𝑏) ↔ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑎(Hom ‘𝐷)𝑏)))
3028, 29anbi12d 632 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐷)𝑏)) ↔ (𝑎 ∈ (Base‘𝐷) ∧ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑎(Hom ‘𝐷)𝑏))))
3127, 30bitrd 279 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐶)𝑏)) ↔ (𝑎 ∈ (Base‘𝐷) ∧ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑎(Hom ‘𝐷)𝑏))))
3231rabbidva2 3396 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → {𝑎 ∈ (Base‘𝐶) ∣ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐶)𝑏)} = {𝑎 ∈ (Base‘𝐷) ∣ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑎(Hom ‘𝐷)𝑏)})
33 simpr 484 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐶 ∈ Cat)
34 eqid 2729 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
3533, 34, 16initoval 17900 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (InitO‘𝐶) = {𝑎 ∈ (Base‘𝐶) ∣ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐶)𝑏)})
363adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (compf𝐶) = (compf𝐷))
37 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐶 ∈ V)
38 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐷 ∈ V)
3914, 36, 37, 38catpropd 17615 . . . . . 6 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
4039biimpa 476 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐷 ∈ Cat)
41 eqid 2729 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
4240, 41, 17initoval 17900 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (InitO‘𝐷) = {𝑎 ∈ (Base‘𝐷) ∣ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑎(Hom ‘𝐷)𝑏)})
4332, 35, 423eqtr4d 2774 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (InitO‘𝐶) = (InitO‘𝐷))
4439pm5.32i 574 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ↔ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat))
4544, 43sylbir 235 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat) → (InitO‘𝐶) = (InitO‘𝐷))
46 initofn 17894 . . . . . . . 8 InitO Fn Cat
4746fndmi 6586 . . . . . . 7 dom InitO = Cat
4847eleq2i 2820 . . . . . 6 (𝐶 ∈ dom InitO ↔ 𝐶 ∈ Cat)
49 ndmfv 6855 . . . . . 6 𝐶 ∈ dom InitO → (InitO‘𝐶) = ∅)
5048, 49sylnbir 331 . . . . 5 𝐶 ∈ Cat → (InitO‘𝐶) = ∅)
5150ad2antrl 728 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (InitO‘𝐶) = ∅)
5247eleq2i 2820 . . . . . 6 (𝐷 ∈ dom InitO ↔ 𝐷 ∈ Cat)
53 ndmfv 6855 . . . . . 6 𝐷 ∈ dom InitO → (InitO‘𝐷) = ∅)
5452, 53sylnbir 331 . . . . 5 𝐷 ∈ Cat → (InitO‘𝐷) = ∅)
5554ad2antll 729 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (InitO‘𝐷) = ∅)
5651, 55eqtr4d 2767 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (InitO‘𝐶) = (InitO‘𝐷))
5743, 45, 56pm2.61ddan 813 . 2 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (InitO‘𝐶) = (InitO‘𝐷))
586, 13, 57pm2.61dda 814 1 (𝜑 → (InitO‘𝐶) = (InitO‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  ∃!weu 2561  wral 3044  {crab 3394  Vcvv 3436  c0 4284  dom cdm 5619  cfv 6482  (class class class)co 7349  Basecbs 17120  Hom chom 17172  Catccat 17570  Homf chomf 17572  compfccomf 17573  InitOcinito 17888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-cat 17574  df-homf 17576  df-comf 17577  df-inito 17891
This theorem is referenced by:  zeroopropd  49230
  Copyright terms: Public domain W3C validator