Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  initopropd Structured version   Visualization version   GIF version

Theorem initopropd 49275
Description: Two structures with the same base, hom-sets and composition operation have the same initial objects. (Contributed by Zhi Wang, 23-Oct-2025.)
Hypotheses
Ref Expression
initopropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
initopropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
Assertion
Ref Expression
initopropd (𝜑 → (InitO‘𝐶) = (InitO‘𝐷))

Proof of Theorem initopropd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 initopropd.1 . . . 4 (𝜑 → (Homf𝐶) = (Homf𝐷))
21adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (Homf𝐶) = (Homf𝐷))
3 initopropd.2 . . . 4 (𝜑 → (compf𝐶) = (compf𝐷))
43adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (compf𝐶) = (compf𝐷))
5 simpr 484 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → ¬ 𝐶 ∈ V)
62, 4, 5initopropdlem 49272 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ V) → (InitO‘𝐶) = (InitO‘𝐷))
71adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf𝐶) = (Homf𝐷))
87eqcomd 2737 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (Homf𝐷) = (Homf𝐶))
93adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (compf𝐶) = (compf𝐷))
109eqcomd 2737 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (compf𝐷) = (compf𝐶))
11 simpr 484 . . . 4 ((𝜑 ∧ ¬ 𝐷 ∈ V) → ¬ 𝐷 ∈ V)
128, 10, 11initopropdlem 49272 . . 3 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (InitO‘𝐷) = (InitO‘𝐶))
1312eqcomd 2737 . 2 ((𝜑 ∧ ¬ 𝐷 ∈ V) → (InitO‘𝐶) = (InitO‘𝐷))
141adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (Homf𝐶) = (Homf𝐷))
1514adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Homf𝐶) = (Homf𝐷))
16 eqid 2731 . . . . . . . . . . . . . 14 (Hom ‘𝐶) = (Hom ‘𝐶)
17 eqid 2731 . . . . . . . . . . . . . 14 (Hom ‘𝐷) = (Hom ‘𝐷)
18 eqidd 2732 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Base‘𝐶) = (Base‘𝐶))
1915homfeqbas 17597 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (Base‘𝐶) = (Base‘𝐷))
2016, 17, 18, 19homfeq 17595 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((Homf𝐶) = (Homf𝐷) ↔ ∀𝑎 ∈ (Base‘𝐶)∀𝑏 ∈ (Base‘𝐶)(𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏)))
2115, 20mpbid 232 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ∀𝑎 ∈ (Base‘𝐶)∀𝑏 ∈ (Base‘𝐶)(𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏))
2221r19.21bi 3224 . . . . . . . . . . 11 ((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) → ∀𝑏 ∈ (Base‘𝐶)(𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏))
2322r19.21bi 3224 . . . . . . . . . 10 (((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏))
2423eleq2d 2817 . . . . . . . . 9 (((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → ( ∈ (𝑎(Hom ‘𝐶)𝑏) ↔ ∈ (𝑎(Hom ‘𝐷)𝑏)))
2524eubidv 2581 . . . . . . . 8 (((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (∃! ∈ (𝑎(Hom ‘𝐶)𝑏) ↔ ∃! ∈ (𝑎(Hom ‘𝐷)𝑏)))
2625ralbidva 3153 . . . . . . 7 ((((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ∧ 𝑎 ∈ (Base‘𝐶)) → (∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐶)𝑏) ↔ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐷)𝑏)))
2726pm5.32da 579 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐶)𝑏)) ↔ (𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐷)𝑏))))
2819eleq2d 2817 . . . . . . 7 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (𝑎 ∈ (Base‘𝐶) ↔ 𝑎 ∈ (Base‘𝐷)))
2919raleqdv 3292 . . . . . . 7 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐷)𝑏) ↔ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑎(Hom ‘𝐷)𝑏)))
3028, 29anbi12d 632 . . . . . 6 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐷)𝑏)) ↔ (𝑎 ∈ (Base‘𝐷) ∧ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑎(Hom ‘𝐷)𝑏))))
3127, 30bitrd 279 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → ((𝑎 ∈ (Base‘𝐶) ∧ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐶)𝑏)) ↔ (𝑎 ∈ (Base‘𝐷) ∧ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑎(Hom ‘𝐷)𝑏))))
3231rabbidva2 3397 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → {𝑎 ∈ (Base‘𝐶) ∣ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐶)𝑏)} = {𝑎 ∈ (Base‘𝐷) ∣ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑎(Hom ‘𝐷)𝑏)})
33 simpr 484 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐶 ∈ Cat)
34 eqid 2731 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
3533, 34, 16initoval 17895 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (InitO‘𝐶) = {𝑎 ∈ (Base‘𝐶) ∣ ∀𝑏 ∈ (Base‘𝐶)∃! ∈ (𝑎(Hom ‘𝐶)𝑏)})
363adantr 480 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (compf𝐶) = (compf𝐷))
37 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐶 ∈ V)
38 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → 𝐷 ∈ V)
3914, 36, 37, 38catpropd 17610 . . . . . 6 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
4039biimpa 476 . . . . 5 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → 𝐷 ∈ Cat)
41 eqid 2731 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
4240, 41, 17initoval 17895 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (InitO‘𝐷) = {𝑎 ∈ (Base‘𝐷) ∣ ∀𝑏 ∈ (Base‘𝐷)∃! ∈ (𝑎(Hom ‘𝐷)𝑏)})
4332, 35, 423eqtr4d 2776 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) → (InitO‘𝐶) = (InitO‘𝐷))
4439pm5.32i 574 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐶 ∈ Cat) ↔ ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat))
4544, 43sylbir 235 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ 𝐷 ∈ Cat) → (InitO‘𝐶) = (InitO‘𝐷))
46 initofn 17889 . . . . . . . 8 InitO Fn Cat
4746fndmi 6580 . . . . . . 7 dom InitO = Cat
4847eleq2i 2823 . . . . . 6 (𝐶 ∈ dom InitO ↔ 𝐶 ∈ Cat)
49 ndmfv 6849 . . . . . 6 𝐶 ∈ dom InitO → (InitO‘𝐶) = ∅)
5048, 49sylnbir 331 . . . . 5 𝐶 ∈ Cat → (InitO‘𝐶) = ∅)
5150ad2antrl 728 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (InitO‘𝐶) = ∅)
5247eleq2i 2823 . . . . . 6 (𝐷 ∈ dom InitO ↔ 𝐷 ∈ Cat)
53 ndmfv 6849 . . . . . 6 𝐷 ∈ dom InitO → (InitO‘𝐷) = ∅)
5452, 53sylnbir 331 . . . . 5 𝐷 ∈ Cat → (InitO‘𝐷) = ∅)
5554ad2antll 729 . . . 4 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (InitO‘𝐷) = ∅)
5651, 55eqtr4d 2769 . . 3 (((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) ∧ (¬ 𝐶 ∈ Cat ∧ ¬ 𝐷 ∈ Cat)) → (InitO‘𝐶) = (InitO‘𝐷))
5743, 45, 56pm2.61ddan 813 . 2 ((𝜑 ∧ (𝐶 ∈ V ∧ 𝐷 ∈ V)) → (InitO‘𝐶) = (InitO‘𝐷))
586, 13, 57pm2.61dda 814 1 (𝜑 → (InitO‘𝐶) = (InitO‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  ∃!weu 2563  wral 3047  {crab 3395  Vcvv 3436  c0 4278  dom cdm 5611  cfv 6476  (class class class)co 7341  Basecbs 17115  Hom chom 17167  Catccat 17565  Homf chomf 17567  compfccomf 17568  InitOcinito 17883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-cat 17569  df-homf 17571  df-comf 17572  df-inito 17886
This theorem is referenced by:  zeroopropd  49277
  Copyright terms: Public domain W3C validator