Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzo0 | GIF version |
Description: Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
Ref | Expression |
---|---|
elfzo0 | ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzouz 10107 | . . . 4 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ (ℤ≥‘0)) | |
2 | elnn0uz 9524 | . . . 4 ⊢ (𝐴 ∈ ℕ0 ↔ 𝐴 ∈ (ℤ≥‘0)) | |
3 | 1, 2 | sylibr 133 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ ℕ0) |
4 | elfzolt3b 10115 | . . . 4 ⊢ (𝐴 ∈ (0..^𝐵) → 0 ∈ (0..^𝐵)) | |
5 | lbfzo0 10137 | . . . 4 ⊢ (0 ∈ (0..^𝐵) ↔ 𝐵 ∈ ℕ) | |
6 | 4, 5 | sylib 121 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ ℕ) |
7 | elfzolt2 10112 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 < 𝐵) | |
8 | 3, 6, 7 | 3jca 1172 | . 2 ⊢ (𝐴 ∈ (0..^𝐵) → (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) |
9 | simp1 992 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℕ0) | |
10 | 9, 2 | sylib 121 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ (ℤ≥‘0)) |
11 | nnz 9231 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
12 | 11 | 3ad2ant2 1014 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ) |
13 | simp3 994 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
14 | elfzo2 10106 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ (ℤ≥‘0) ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) | |
15 | 10, 12, 13, 14 | syl3anbrc 1176 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ (0..^𝐵)) |
16 | 8, 15 | impbii 125 | 1 ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∧ w3a 973 ∈ wcel 2141 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 0cc0 7774 < clt 7954 ℕcn 8878 ℕ0cn0 9135 ℤcz 9212 ℤ≥cuz 9487 ..^cfzo 10098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-fzo 10099 |
This theorem is referenced by: fzo1fzo0n0 10139 elfzo0z 10140 elfzo0le 10141 fzonmapblen 10143 fzofzim 10144 ubmelfzo 10156 elfzodifsumelfzo 10157 elfzonlteqm1 10166 fzonn0p1 10167 fzonn0p1p1 10169 elfzom1p1elfzo 10170 ubmelm1fzo 10182 subfzo0 10198 zmodidfzoimp 10310 modfzo0difsn 10351 modsumfzodifsn 10352 addmodlteq 10354 addmodlteqALT 11819 hashgcdlem 12192 |
Copyright terms: Public domain | W3C validator |