| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzo0 | GIF version | ||
| Description: Membership in a half-open integer range based at 0. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 29-Sep-2015.) |
| Ref | Expression |
|---|---|
| elfzo0 | ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzouz 10288 | . . . 4 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ (ℤ≥‘0)) | |
| 2 | elnn0uz 9701 | . . . 4 ⊢ (𝐴 ∈ ℕ0 ↔ 𝐴 ∈ (ℤ≥‘0)) | |
| 3 | 1, 2 | sylibr 134 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 ∈ ℕ0) |
| 4 | elfzolt3b 10297 | . . . 4 ⊢ (𝐴 ∈ (0..^𝐵) → 0 ∈ (0..^𝐵)) | |
| 5 | lbfzo0 10322 | . . . 4 ⊢ (0 ∈ (0..^𝐵) ↔ 𝐵 ∈ ℕ) | |
| 6 | 4, 5 | sylib 122 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐵 ∈ ℕ) |
| 7 | elfzolt2 10294 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) → 𝐴 < 𝐵) | |
| 8 | 3, 6, 7 | 3jca 1180 | . 2 ⊢ (𝐴 ∈ (0..^𝐵) → (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) |
| 9 | simp1 1000 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℕ0) | |
| 10 | 9, 2 | sylib 122 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ (ℤ≥‘0)) |
| 11 | nnz 9406 | . . . 4 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
| 12 | 11 | 3ad2ant2 1022 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ) |
| 13 | simp3 1002 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵) | |
| 14 | elfzo2 10287 | . . 3 ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ (ℤ≥‘0) ∧ 𝐵 ∈ ℤ ∧ 𝐴 < 𝐵)) | |
| 15 | 10, 12, 13, 14 | syl3anbrc 1184 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ (0..^𝐵)) |
| 16 | 8, 15 | impbii 126 | 1 ⊢ (𝐴 ∈ (0..^𝐵) ↔ (𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∧ w3a 981 ∈ wcel 2177 class class class wbr 4050 ‘cfv 5279 (class class class)co 5956 0cc0 7940 < clt 8122 ℕcn 9051 ℕ0cn0 9310 ℤcz 9387 ℤ≥cuz 9663 ..^cfzo 10279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-inn 9052 df-n0 9311 df-z 9388 df-uz 9664 df-fz 10146 df-fzo 10280 |
| This theorem is referenced by: fzo1fzo0n0 10324 elfzo0z 10325 elfzo0le 10326 fzonmapblen 10328 fzofzim 10329 ubmelfzo 10346 elfzodifsumelfzo 10347 elfzonlteqm1 10356 fzonn0p1 10357 fzonn0p1p1 10359 elfzom1p1elfzo 10360 ubmelm1fzo 10372 subfzo0 10388 zmodidfzoimp 10516 modfzo0difsn 10557 modsumfzodifsn 10558 addmodlteq 10560 swrdswrd 11176 addmodlteqALT 12240 hashgcdlem 12630 |
| Copyright terms: Public domain | W3C validator |