Step | Hyp | Ref
| Expression |
1 | | eqidd 2194 |
. . . . . . 7
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) |
2 | | gsumpropd2.b |
. . . . . . 7
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
3 | | gsumpropd2.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ 𝑊) |
4 | | gsumpropd2.h |
. . . . . . 7
⊢ (𝜑 → 𝐻 ∈ 𝑋) |
5 | | gsumpropd2.e |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) = (𝑠(+g‘𝐻)𝑡)) |
6 | 1, 2, 3, 4, 5 | grpidpropdg 12957 |
. . . . . 6
⊢ (𝜑 → (0g‘𝐺) = (0g‘𝐻)) |
7 | 6 | eqeq2d 2205 |
. . . . 5
⊢ (𝜑 → (𝑥 = (0g‘𝐺) ↔ 𝑥 = (0g‘𝐻))) |
8 | 7 | anbi2d 464 |
. . . 4
⊢ (𝜑 → ((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐺)) ↔ (dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐻)))) |
9 | | simprl 529 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → 𝑛 ∈ (ℤ≥‘𝑚)) |
10 | | gsumpropd2.r |
. . . . . . . . . . . 12
⊢ (𝜑 → ran 𝐹 ⊆ (Base‘𝐺)) |
11 | 10 | ad2antrr 488 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → ran 𝐹 ⊆ (Base‘𝐺)) |
12 | | gsumpropd2.n |
. . . . . . . . . . . . 13
⊢ (𝜑 → Fun 𝐹) |
13 | 12 | ad2antrr 488 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → Fun 𝐹) |
14 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ (𝑚...𝑛)) |
15 | | simplrr 536 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → dom 𝐹 = (𝑚...𝑛)) |
16 | 14, 15 | eleqtrrd 2273 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ dom 𝐹) |
17 | | fvelrn 5689 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ 𝑠 ∈ dom 𝐹) → (𝐹‘𝑠) ∈ ran 𝐹) |
18 | 13, 16, 17 | syl2anc 411 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹‘𝑠) ∈ ran 𝐹) |
19 | 11, 18 | sseldd 3180 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹‘𝑠) ∈ (Base‘𝐺)) |
20 | | gsumpropd2.f |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
21 | 20 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → 𝐹 ∈ 𝑉) |
22 | | plusgslid 12730 |
. . . . . . . . . . . . 13
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
23 | 22 | slotex 12645 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ 𝑊 → (+g‘𝐺) ∈ V) |
24 | 3, 23 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → (+g‘𝐺) ∈ V) |
25 | 24 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (+g‘𝐺) ∈ V) |
26 | 22 | slotex 12645 |
. . . . . . . . . . . 12
⊢ (𝐻 ∈ 𝑋 → (+g‘𝐻) ∈ V) |
27 | 4, 26 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → (+g‘𝐻) ∈ V) |
28 | 27 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (+g‘𝐻) ∈ V) |
29 | | gsumpropd2.c |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺)) |
30 | 29 | adantlr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺)) |
31 | 5 | adantlr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) = (𝑠(+g‘𝐻)𝑡)) |
32 | 9, 19, 21, 25, 28, 30, 31 | seqfeq4g 10602 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (seq𝑚((+g‘𝐺), 𝐹)‘𝑛) = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)) |
33 | 32 | eqeq2d 2205 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))) |
34 | 33 | anassrs 400 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ dom 𝐹 = (𝑚...𝑛)) → (𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))) |
35 | 34 | pm5.32da 452 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → ((dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)) ↔ (dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
36 | 35 | rexbidva 2491 |
. . . . 5
⊢ (𝜑 → (∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
37 | 36 | exbidv 1836 |
. . . 4
⊢ (𝜑 → (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)) ↔ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) |
38 | 8, 37 | orbi12d 794 |
. . 3
⊢ (𝜑 → (((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛))) ↔ ((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐻)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))))) |
39 | 38 | iotabidv 5237 |
. 2
⊢ (𝜑 → (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)))) = (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐻)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))))) |
40 | | eqid 2193 |
. . 3
⊢
(Base‘𝐺) =
(Base‘𝐺) |
41 | | eqid 2193 |
. . 3
⊢
(0g‘𝐺) = (0g‘𝐺) |
42 | | eqid 2193 |
. . 3
⊢
(+g‘𝐺) = (+g‘𝐺) |
43 | | eqidd 2194 |
. . 3
⊢ (𝜑 → dom 𝐹 = dom 𝐹) |
44 | 40, 41, 42, 3, 20, 43 | igsumvalx 12972 |
. 2
⊢ (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛))))) |
45 | | eqid 2193 |
. . 3
⊢
(Base‘𝐻) =
(Base‘𝐻) |
46 | | eqid 2193 |
. . 3
⊢
(0g‘𝐻) = (0g‘𝐻) |
47 | | eqid 2193 |
. . 3
⊢
(+g‘𝐻) = (+g‘𝐻) |
48 | 45, 46, 47, 4, 20, 43 | igsumvalx 12972 |
. 2
⊢ (𝜑 → (𝐻 Σg 𝐹) = (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐻)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))))) |
49 | 39, 44, 48 | 3eqtr4d 2236 |
1
⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) |