ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumpropd2 GIF version

Theorem gsumpropd2 13095
Description: A stronger version of gsumpropd 13094, working for magma, where only the closure of the addition operation on a common base is required, see gsummgmpropd 13096. (Contributed by Thierry Arnoux, 28-Jun-2017.)
Hypotheses
Ref Expression
gsumpropd2.f (𝜑𝐹𝑉)
gsumpropd2.g (𝜑𝐺𝑊)
gsumpropd2.h (𝜑𝐻𝑋)
gsumpropd2.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
gsumpropd2.c ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
gsumpropd2.e ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
gsumpropd2.n (𝜑 → Fun 𝐹)
gsumpropd2.r (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
Assertion
Ref Expression
gsumpropd2 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Distinct variable groups:   𝐹,𝑠,𝑡   𝐺,𝑠,𝑡   𝐻,𝑠,𝑡   𝜑,𝑠,𝑡
Allowed substitution hints:   𝑉(𝑡,𝑠)   𝑊(𝑡,𝑠)   𝑋(𝑡,𝑠)

Proof of Theorem gsumpropd2
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2197 . . . . . . 7 (𝜑 → (Base‘𝐺) = (Base‘𝐺))
2 gsumpropd2.b . . . . . . 7 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
3 gsumpropd2.g . . . . . . 7 (𝜑𝐺𝑊)
4 gsumpropd2.h . . . . . . 7 (𝜑𝐻𝑋)
5 gsumpropd2.e . . . . . . 7 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
61, 2, 3, 4, 5grpidpropdg 13076 . . . . . 6 (𝜑 → (0g𝐺) = (0g𝐻))
76eqeq2d 2208 . . . . 5 (𝜑 → (𝑥 = (0g𝐺) ↔ 𝑥 = (0g𝐻)))
87anbi2d 464 . . . 4 (𝜑 → ((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐺)) ↔ (dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐻))))
9 simprl 529 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → 𝑛 ∈ (ℤ𝑚))
10 gsumpropd2.r . . . . . . . . . . . 12 (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
1110ad2antrr 488 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → ran 𝐹 ⊆ (Base‘𝐺))
12 gsumpropd2.n . . . . . . . . . . . . 13 (𝜑 → Fun 𝐹)
1312ad2antrr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → Fun 𝐹)
14 simpr 110 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ (𝑚...𝑛))
15 simplrr 536 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → dom 𝐹 = (𝑚...𝑛))
1614, 15eleqtrrd 2276 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ dom 𝐹)
17 fvelrn 5696 . . . . . . . . . . . 12 ((Fun 𝐹𝑠 ∈ dom 𝐹) → (𝐹𝑠) ∈ ran 𝐹)
1813, 16, 17syl2anc 411 . . . . . . . . . . 11 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹𝑠) ∈ ran 𝐹)
1911, 18sseldd 3185 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹𝑠) ∈ (Base‘𝐺))
20 gsumpropd2.f . . . . . . . . . . 11 (𝜑𝐹𝑉)
2120adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → 𝐹𝑉)
22 plusgslid 12815 . . . . . . . . . . . . 13 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
2322slotex 12730 . . . . . . . . . . . 12 (𝐺𝑊 → (+g𝐺) ∈ V)
243, 23syl 14 . . . . . . . . . . 11 (𝜑 → (+g𝐺) ∈ V)
2524adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (+g𝐺) ∈ V)
2622slotex 12730 . . . . . . . . . . . 12 (𝐻𝑋 → (+g𝐻) ∈ V)
274, 26syl 14 . . . . . . . . . . 11 (𝜑 → (+g𝐻) ∈ V)
2827adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (+g𝐻) ∈ V)
29 gsumpropd2.c . . . . . . . . . . 11 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
3029adantlr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
315adantlr 477 . . . . . . . . . 10 (((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
329, 19, 21, 25, 28, 30, 31seqfeq4g 10640 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (seq𝑚((+g𝐺), 𝐹)‘𝑛) = (seq𝑚((+g𝐻), 𝐹)‘𝑛))
3332eqeq2d 2208 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
3433anassrs 400 . . . . . . 7 (((𝜑𝑛 ∈ (ℤ𝑚)) ∧ dom 𝐹 = (𝑚...𝑛)) → (𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))
3534pm5.32da 452 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑚)) → ((dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ (dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3635rexbidva 2494 . . . . 5 (𝜑 → (∃𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
3736exbidv 1839 . . . 4 (𝜑 → (∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)) ↔ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛))))
388, 37orbi12d 794 . . 3 (𝜑 → (((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛))) ↔ ((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐻)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))))
3938iotabidv 5242 . 2 (𝜑 → (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)))) = (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐻)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))))
40 eqid 2196 . . 3 (Base‘𝐺) = (Base‘𝐺)
41 eqid 2196 . . 3 (0g𝐺) = (0g𝐺)
42 eqid 2196 . . 3 (+g𝐺) = (+g𝐺)
43 eqidd 2197 . . 3 (𝜑 → dom 𝐹 = dom 𝐹)
4440, 41, 42, 3, 20, 43igsumvalx 13091 . 2 (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐺)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐺), 𝐹)‘𝑛)))))
45 eqid 2196 . . 3 (Base‘𝐻) = (Base‘𝐻)
46 eqid 2196 . . 3 (0g𝐻) = (0g𝐻)
47 eqid 2196 . . 3 (+g𝐻) = (+g𝐻)
4845, 46, 47, 4, 20, 43igsumvalx 13091 . 2 (𝜑 → (𝐻 Σg 𝐹) = (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g𝐻)) ∨ ∃𝑚𝑛 ∈ (ℤ𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝐻), 𝐹)‘𝑛)))))
4939, 44, 483eqtr4d 2239 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wex 1506  wcel 2167  wrex 2476  Vcvv 2763  wss 3157  c0 3451  dom cdm 4664  ran crn 4665  cio 5218  Fun wfun 5253  cfv 5259  (class class class)co 5925  cuz 9618  ...cfz 10100  seqcseq 10556  Basecbs 12703  +gcplusg 12780  0gc0g 12958   Σg cgsu 12959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-igsum 12961
This theorem is referenced by:  gsummgmpropd  13096
  Copyright terms: Public domain W3C validator