| Step | Hyp | Ref
 | Expression | 
| 1 |   | eqidd 2197 | 
. . . . . . 7
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐺)) | 
| 2 |   | gsumpropd2.b | 
. . . . . . 7
⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) | 
| 3 |   | gsumpropd2.g | 
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ 𝑊) | 
| 4 |   | gsumpropd2.h | 
. . . . . . 7
⊢ (𝜑 → 𝐻 ∈ 𝑋) | 
| 5 |   | gsumpropd2.e | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) = (𝑠(+g‘𝐻)𝑡)) | 
| 6 | 1, 2, 3, 4, 5 | grpidpropdg 13017 | 
. . . . . 6
⊢ (𝜑 → (0g‘𝐺) = (0g‘𝐻)) | 
| 7 | 6 | eqeq2d 2208 | 
. . . . 5
⊢ (𝜑 → (𝑥 = (0g‘𝐺) ↔ 𝑥 = (0g‘𝐻))) | 
| 8 | 7 | anbi2d 464 | 
. . . 4
⊢ (𝜑 → ((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐺)) ↔ (dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐻)))) | 
| 9 |   | simprl 529 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → 𝑛 ∈ (ℤ≥‘𝑚)) | 
| 10 |   | gsumpropd2.r | 
. . . . . . . . . . . 12
⊢ (𝜑 → ran 𝐹 ⊆ (Base‘𝐺)) | 
| 11 | 10 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → ran 𝐹 ⊆ (Base‘𝐺)) | 
| 12 |   | gsumpropd2.n | 
. . . . . . . . . . . . 13
⊢ (𝜑 → Fun 𝐹) | 
| 13 | 12 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → Fun 𝐹) | 
| 14 |   | simpr 110 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ (𝑚...𝑛)) | 
| 15 |   | simplrr 536 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → dom 𝐹 = (𝑚...𝑛)) | 
| 16 | 14, 15 | eleqtrrd 2276 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → 𝑠 ∈ dom 𝐹) | 
| 17 |   | fvelrn 5693 | 
. . . . . . . . . . . 12
⊢ ((Fun
𝐹 ∧ 𝑠 ∈ dom 𝐹) → (𝐹‘𝑠) ∈ ran 𝐹) | 
| 18 | 13, 16, 17 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹‘𝑠) ∈ ran 𝐹) | 
| 19 | 11, 18 | sseldd 3184 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ 𝑠 ∈ (𝑚...𝑛)) → (𝐹‘𝑠) ∈ (Base‘𝐺)) | 
| 20 |   | gsumpropd2.f | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ 𝑉) | 
| 21 | 20 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → 𝐹 ∈ 𝑉) | 
| 22 |   | plusgslid 12790 | 
. . . . . . . . . . . . 13
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) | 
| 23 | 22 | slotex 12705 | 
. . . . . . . . . . . 12
⊢ (𝐺 ∈ 𝑊 → (+g‘𝐺) ∈ V) | 
| 24 | 3, 23 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝜑 → (+g‘𝐺) ∈ V) | 
| 25 | 24 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (+g‘𝐺) ∈ V) | 
| 26 | 22 | slotex 12705 | 
. . . . . . . . . . . 12
⊢ (𝐻 ∈ 𝑋 → (+g‘𝐻) ∈ V) | 
| 27 | 4, 26 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝜑 → (+g‘𝐻) ∈ V) | 
| 28 | 27 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (+g‘𝐻) ∈ V) | 
| 29 |   | gsumpropd2.c | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺)) | 
| 30 | 29 | adantlr 477 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺)) | 
| 31 | 5 | adantlr 477 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) = (𝑠(+g‘𝐻)𝑡)) | 
| 32 | 9, 19, 21, 25, 28, 30, 31 | seqfeq4g 10623 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (seq𝑚((+g‘𝐺), 𝐹)‘𝑛) = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)) | 
| 33 | 32 | eqeq2d 2208 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑚) ∧ dom 𝐹 = (𝑚...𝑛))) → (𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))) | 
| 34 | 33 | anassrs 400 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) ∧ dom 𝐹 = (𝑚...𝑛)) → (𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛) ↔ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))) | 
| 35 | 34 | pm5.32da 452 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑚)) → ((dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)) ↔ (dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) | 
| 36 | 35 | rexbidva 2494 | 
. . . . 5
⊢ (𝜑 → (∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)) ↔ ∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) | 
| 37 | 36 | exbidv 1839 | 
. . . 4
⊢ (𝜑 → (∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)) ↔ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛)))) | 
| 38 | 8, 37 | orbi12d 794 | 
. . 3
⊢ (𝜑 → (((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛))) ↔ ((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐻)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))))) | 
| 39 | 38 | iotabidv 5241 | 
. 2
⊢ (𝜑 → (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛)))) = (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐻)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))))) | 
| 40 |   | eqid 2196 | 
. . 3
⊢
(Base‘𝐺) =
(Base‘𝐺) | 
| 41 |   | eqid 2196 | 
. . 3
⊢
(0g‘𝐺) = (0g‘𝐺) | 
| 42 |   | eqid 2196 | 
. . 3
⊢
(+g‘𝐺) = (+g‘𝐺) | 
| 43 |   | eqidd 2197 | 
. . 3
⊢ (𝜑 → dom 𝐹 = dom 𝐹) | 
| 44 | 40, 41, 42, 3, 20, 43 | igsumvalx 13032 | 
. 2
⊢ (𝜑 → (𝐺 Σg 𝐹) = (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐺)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐺), 𝐹)‘𝑛))))) | 
| 45 |   | eqid 2196 | 
. . 3
⊢
(Base‘𝐻) =
(Base‘𝐻) | 
| 46 |   | eqid 2196 | 
. . 3
⊢
(0g‘𝐻) = (0g‘𝐻) | 
| 47 |   | eqid 2196 | 
. . 3
⊢
(+g‘𝐻) = (+g‘𝐻) | 
| 48 | 45, 46, 47, 4, 20, 43 | igsumvalx 13032 | 
. 2
⊢ (𝜑 → (𝐻 Σg 𝐹) = (℩𝑥((dom 𝐹 = ∅ ∧ 𝑥 = (0g‘𝐻)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝐹 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝐻), 𝐹)‘𝑛))))) | 
| 49 | 39, 44, 48 | 3eqtr4d 2239 | 
1
⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) |