ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumle Unicode version

Theorem isumle 11777
Description: Comparison of two infinite sums. (Contributed by Paul Chapman, 13-Nov-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumle.1  |-  Z  =  ( ZZ>= `  M )
isumle.2  |-  ( ph  ->  M  e.  ZZ )
isumle.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
isumle.4  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  RR )
isumle.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )
isumle.6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR )
isumle.7  |-  ( (
ph  /\  k  e.  Z )  ->  A  <_  B )
isumle.8  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
isumle.9  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
Assertion
Ref Expression
isumle  |-  ( ph  -> 
sum_ k  e.  Z  A  <_  sum_ k  e.  Z  B )
Distinct variable groups:    k, F    k, G    k, M    ph, k    k, Z
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem isumle
StepHypRef Expression
1 isumle.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 isumle.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 isumle.8 . . . 4  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
4 climdm 11577 . . . 4  |-  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq M (  +  ,  F )  ~~>  (  ~~>  `  seq M (  +  ,  F ) ) )
53, 4sylib 122 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  (  ~~>  `  seq M (  +  ,  F ) ) )
6 isumle.9 . . . 4  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
7 climdm 11577 . . . 4  |-  (  seq M (  +  ,  G )  e.  dom  ~~>  <->  seq M (  +  ,  G )  ~~>  (  ~~>  `  seq M (  +  ,  G ) ) )
86, 7sylib 122 . . 3  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  (  ~~>  `  seq M (  +  ,  G ) ) )
9 isumle.3 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
10 isumle.4 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  RR )
119, 10eqeltrd 2281 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
12 isumle.5 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )
13 isumle.6 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR )
1412, 13eqeltrd 2281 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
15 isumle.7 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  A  <_  B )
1615, 9, 123brtr4d 4075 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k
) )
171, 2, 5, 8, 11, 14, 16iserle 11624 . 2  |-  ( ph  ->  (  ~~>  `  seq M (  +  ,  F ) )  <_  (  ~~>  `  seq M (  +  ,  G ) ) )
1810recnd 8100 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
191, 2, 9, 18isum 11667 . 2  |-  ( ph  -> 
sum_ k  e.  Z  A  =  (  ~~>  `  seq M (  +  ,  F ) ) )
2013recnd 8100 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
211, 2, 12, 20isum 11667 . 2  |-  ( ph  -> 
sum_ k  e.  Z  B  =  (  ~~>  `  seq M (  +  ,  G ) ) )
2217, 19, 213brtr4d 4075 1  |-  ( ph  -> 
sum_ k  e.  Z  A  <_  sum_ k  e.  Z  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   class class class wbr 4043   dom cdm 4674   ` cfv 5270   RRcr 7923    + caddc 7927    <_ cle 8107   ZZcz 9371   ZZ>=cuz 9647    seqcseq 10590    ~~> cli 11560   sum_csu 11635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682  df-ihash 10919  df-cj 11124  df-re 11125  df-im 11126  df-rsqrt 11280  df-abs 11281  df-clim 11561  df-sumdc 11636
This theorem is referenced by:  isumlessdc  11778  eftlub  11972  eflegeo  11983  trilpolemisumle  15939
  Copyright terms: Public domain W3C validator