ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumle Unicode version

Theorem isumle 11521
Description: Comparison of two infinite sums. (Contributed by Paul Chapman, 13-Nov-2007.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumle.1  |-  Z  =  ( ZZ>= `  M )
isumle.2  |-  ( ph  ->  M  e.  ZZ )
isumle.3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
isumle.4  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  RR )
isumle.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )
isumle.6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR )
isumle.7  |-  ( (
ph  /\  k  e.  Z )  ->  A  <_  B )
isumle.8  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
isumle.9  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
Assertion
Ref Expression
isumle  |-  ( ph  -> 
sum_ k  e.  Z  A  <_  sum_ k  e.  Z  B )
Distinct variable groups:    k, F    k, G    k, M    ph, k    k, Z
Allowed substitution hints:    A( k)    B( k)

Proof of Theorem isumle
StepHypRef Expression
1 isumle.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 isumle.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 isumle.8 . . . 4  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
4 climdm 11321 . . . 4  |-  (  seq M (  +  ,  F )  e.  dom  ~~>  <->  seq M (  +  ,  F )  ~~>  (  ~~>  `  seq M (  +  ,  F ) ) )
53, 4sylib 122 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  (  ~~>  `  seq M (  +  ,  F ) ) )
6 isumle.9 . . . 4  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
7 climdm 11321 . . . 4  |-  (  seq M (  +  ,  G )  e.  dom  ~~>  <->  seq M (  +  ,  G )  ~~>  (  ~~>  `  seq M (  +  ,  G ) ) )
86, 7sylib 122 . . 3  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  (  ~~>  `  seq M (  +  ,  G ) ) )
9 isumle.3 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
10 isumle.4 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  RR )
119, 10eqeltrd 2266 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
12 isumle.5 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  B )
13 isumle.6 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  RR )
1412, 13eqeltrd 2266 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
15 isumle.7 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  A  <_  B )
1615, 9, 123brtr4d 4050 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k
) )
171, 2, 5, 8, 11, 14, 16iserle 11368 . 2  |-  ( ph  ->  (  ~~>  `  seq M (  +  ,  F ) )  <_  (  ~~>  `  seq M (  +  ,  G ) ) )
1810recnd 8004 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  CC )
191, 2, 9, 18isum 11411 . 2  |-  ( ph  -> 
sum_ k  e.  Z  A  =  (  ~~>  `  seq M (  +  ,  F ) ) )
2013recnd 8004 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
211, 2, 12, 20isum 11411 . 2  |-  ( ph  -> 
sum_ k  e.  Z  B  =  (  ~~>  `  seq M (  +  ,  G ) ) )
2217, 19, 213brtr4d 4050 1  |-  ( ph  -> 
sum_ k  e.  Z  A  <_  sum_ k  e.  Z  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   class class class wbr 4018   dom cdm 4641   ` cfv 5231   RRcr 7828    + caddc 7832    <_ cle 8011   ZZcz 9271   ZZ>=cuz 9546    seqcseq 10463    ~~> cli 11304   sum_csu 11379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulrcl 7928  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-precex 7939  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-apti 7944  ax-pre-ltadd 7945  ax-pre-mulgt0 7946  ax-pre-mulext 7947  ax-arch 7948  ax-caucvg 7949
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-isom 5240  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-irdg 6389  df-frec 6410  df-1o 6435  df-oadd 6439  df-er 6553  df-en 6759  df-dom 6760  df-fin 6761  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-reap 8550  df-ap 8557  df-div 8648  df-inn 8938  df-2 8996  df-3 8997  df-4 8998  df-n0 9195  df-z 9272  df-uz 9547  df-q 9638  df-rp 9672  df-fz 10027  df-fzo 10161  df-seqfrec 10464  df-exp 10538  df-ihash 10774  df-cj 10869  df-re 10870  df-im 10871  df-rsqrt 11025  df-abs 11026  df-clim 11305  df-sumdc 11380
This theorem is referenced by:  isumlessdc  11522  eftlub  11716  eflegeo  11727  trilpolemisumle  15184
  Copyright terms: Public domain W3C validator