Proof of Theorem mulsubdivbinom2ap
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 999 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → 𝐴 ∈
ℂ) |
| 2 | 1 | adantr 276 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → 𝐴 ∈ ℂ) |
| 3 | | simpl2 1003 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → 𝐵 ∈ ℂ) |
| 4 | | simpl 109 |
. . . 4
⊢ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) → 𝐶 ∈ ℂ) |
| 5 | 4 | adantl 277 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → 𝐶 ∈ ℂ) |
| 6 | | mulbinom2 10748 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐶 · 𝐴) + 𝐵)↑2) = ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2))) |
| 7 | 6 | oveq1d 5937 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) →
((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) = (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷)) |
| 8 | 7 | oveq1d 5937 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) →
(((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) / 𝐶) = ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶)) |
| 9 | 2, 3, 5, 8 | syl3anc 1249 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) / 𝐶) = ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶)) |
| 10 | 5, 2 | mulcld 8047 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐶 · 𝐴) ∈ ℂ) |
| 11 | 10 | sqcld 10763 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐶 · 𝐴)↑2) ∈ ℂ) |
| 12 | | 2cnd 9063 |
. . . . . . . . . 10
⊢ (𝐶 ∈ ℂ → 2 ∈
ℂ) |
| 13 | | id 19 |
. . . . . . . . . 10
⊢ (𝐶 ∈ ℂ → 𝐶 ∈
ℂ) |
| 14 | 12, 13 | mulcld 8047 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℂ → (2
· 𝐶) ∈
ℂ) |
| 15 | 14 | adantr 276 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) → (2 · 𝐶) ∈
ℂ) |
| 16 | 15 | adantl 277 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (2 · 𝐶) ∈
ℂ) |
| 17 | | mulcl 8006 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
| 18 | 17 | 3adant3 1019 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
| 19 | 18 | adantr 276 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 · 𝐵) ∈ ℂ) |
| 20 | 16, 19 | mulcld 8047 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((2 · 𝐶) · (𝐴 · 𝐵)) ∈ ℂ) |
| 21 | 11, 20 | addcld 8046 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) ∈ ℂ) |
| 22 | | sqcl 10692 |
. . . . . . 7
⊢ (𝐵 ∈ ℂ → (𝐵↑2) ∈
ℂ) |
| 23 | 22 | 3ad2ant2 1021 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐵↑2) ∈
ℂ) |
| 24 | 23 | adantr 276 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐵↑2) ∈ ℂ) |
| 25 | 21, 24 | addcld 8046 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) ∈ ℂ) |
| 26 | | simpl3 1004 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → 𝐷 ∈ ℂ) |
| 27 | | simpr 110 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐶 ∈ ℂ ∧ 𝐶 # 0)) |
| 28 | | divsubdirap 8735 |
. . . 4
⊢
((((((𝐶 ·
𝐴)↑2) + ((2 ·
𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶) = ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) − (𝐷 / 𝐶))) |
| 29 | 25, 26, 27, 28 | syl3anc 1249 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶) = ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) − (𝐷 / 𝐶))) |
| 30 | | divdirap 8724 |
. . . . . 6
⊢
(((((𝐶 ·
𝐴)↑2) + ((2 ·
𝐶) · (𝐴 · 𝐵))) ∈ ℂ ∧ (𝐵↑2) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) = (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) + ((𝐵↑2) / 𝐶))) |
| 31 | 21, 24, 27, 30 | syl3anc 1249 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) = (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) + ((𝐵↑2) / 𝐶))) |
| 32 | | divdirap 8724 |
. . . . . . . 8
⊢ ((((𝐶 · 𝐴)↑2) ∈ ℂ ∧ ((2 ·
𝐶) · (𝐴 · 𝐵)) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) = ((((𝐶 · 𝐴)↑2) / 𝐶) + (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶))) |
| 33 | 11, 20, 27, 32 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) = ((((𝐶 · 𝐴)↑2) / 𝐶) + (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶))) |
| 34 | | sqmul 10693 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐶 · 𝐴)↑2) = ((𝐶↑2) · (𝐴↑2))) |
| 35 | 4, 1, 34 | syl2anr 290 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐶 · 𝐴)↑2) = ((𝐶↑2) · (𝐴↑2))) |
| 36 | 35 | oveq1d 5937 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((𝐶 · 𝐴)↑2) / 𝐶) = (((𝐶↑2) · (𝐴↑2)) / 𝐶)) |
| 37 | | sqcl 10692 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ ℂ → (𝐶↑2) ∈
ℂ) |
| 38 | 37 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) → (𝐶↑2) ∈ ℂ) |
| 39 | 38 | adantl 277 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐶↑2) ∈ ℂ) |
| 40 | | sqcl 10692 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈
ℂ) |
| 41 | 40 | 3ad2ant1 1020 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐴↑2) ∈
ℂ) |
| 42 | 41 | adantr 276 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴↑2) ∈ ℂ) |
| 43 | | div23ap 8718 |
. . . . . . . . . 10
⊢ (((𝐶↑2) ∈ ℂ ∧
(𝐴↑2) ∈ ℂ
∧ (𝐶 ∈ ℂ
∧ 𝐶 # 0)) →
(((𝐶↑2) ·
(𝐴↑2)) / 𝐶) = (((𝐶↑2) / 𝐶) · (𝐴↑2))) |
| 44 | 39, 42, 27, 43 | syl3anc 1249 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((𝐶↑2) · (𝐴↑2)) / 𝐶) = (((𝐶↑2) / 𝐶) · (𝐴↑2))) |
| 45 | | sqdividap 10696 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) → ((𝐶↑2) / 𝐶) = 𝐶) |
| 46 | 45 | adantl 277 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐶↑2) / 𝐶) = 𝐶) |
| 47 | 46 | oveq1d 5937 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((𝐶↑2) / 𝐶) · (𝐴↑2)) = (𝐶 · (𝐴↑2))) |
| 48 | 36, 44, 47 | 3eqtrd 2233 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((𝐶 · 𝐴)↑2) / 𝐶) = (𝐶 · (𝐴↑2))) |
| 49 | | div23ap 8718 |
. . . . . . . . . 10
⊢ (((2
· 𝐶) ∈ ℂ
∧ (𝐴 · 𝐵) ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((2 ·
𝐶) · (𝐴 · 𝐵)) / 𝐶) = (((2 · 𝐶) / 𝐶) · (𝐴 · 𝐵))) |
| 50 | 16, 19, 27, 49 | syl3anc 1249 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((2 ·
𝐶) · (𝐴 · 𝐵)) / 𝐶) = (((2 · 𝐶) / 𝐶) · (𝐴 · 𝐵))) |
| 51 | | 2cnd 9063 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) → 2 ∈
ℂ) |
| 52 | | simpr 110 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) → 𝐶 # 0) |
| 53 | 51, 4, 52 | divcanap4d 8823 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) → ((2 · 𝐶) / 𝐶) = 2) |
| 54 | 53 | adantl 277 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((2 · 𝐶) / 𝐶) = 2) |
| 55 | 54 | oveq1d 5937 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((2 ·
𝐶) / 𝐶) · (𝐴 · 𝐵)) = (2 · (𝐴 · 𝐵))) |
| 56 | 50, 55 | eqtrd 2229 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((2 ·
𝐶) · (𝐴 · 𝐵)) / 𝐶) = (2 · (𝐴 · 𝐵))) |
| 57 | 48, 56 | oveq12d 5940 |
. . . . . . 7
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((((𝐶 · 𝐴)↑2) / 𝐶) + (((2 · 𝐶) · (𝐴 · 𝐵)) / 𝐶)) = ((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵)))) |
| 58 | 33, 57 | eqtrd 2229 |
. . . . . 6
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) = ((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵)))) |
| 59 | 58 | oveq1d 5937 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) / 𝐶) + ((𝐵↑2) / 𝐶)) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) / 𝐶))) |
| 60 | 31, 59 | eqtrd 2229 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) / 𝐶))) |
| 61 | 60 | oveq1d 5937 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) / 𝐶) − (𝐷 / 𝐶)) = ((((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) / 𝐶)) − (𝐷 / 𝐶))) |
| 62 | 5, 42 | mulcld 8047 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐶 · (𝐴↑2)) ∈ ℂ) |
| 63 | | 2cnd 9063 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 2 ∈
ℂ) |
| 64 | 63, 17 | mulcld 8047 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (2
· (𝐴 · 𝐵)) ∈
ℂ) |
| 65 | 64 | 3adant3 1019 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (2
· (𝐴 · 𝐵)) ∈
ℂ) |
| 66 | 65 | adantr 276 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (2 · (𝐴 · 𝐵)) ∈ ℂ) |
| 67 | 62, 66 | addcld 8046 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) ∈ ℂ) |
| 68 | 52 | adantl 277 |
. . . . 5
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → 𝐶 # 0) |
| 69 | 24, 5, 68 | divclapd 8817 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐵↑2) / 𝐶) ∈ ℂ) |
| 70 | 26, 5, 68 | divclapd 8817 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐷 / 𝐶) ∈ ℂ) |
| 71 | 67, 69, 70 | addsubassd 8357 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + ((𝐵↑2) / 𝐶)) − (𝐷 / 𝐶)) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶)))) |
| 72 | 29, 61, 71 | 3eqtrd 2233 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((((((𝐶 · 𝐴)↑2) + ((2 · 𝐶) · (𝐴 · 𝐵))) + (𝐵↑2)) − 𝐷) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶)))) |
| 73 | | divsubdirap 8735 |
. . . . 5
⊢ (((𝐵↑2) ∈ ℂ ∧
𝐷 ∈ ℂ ∧
(𝐶 ∈ ℂ ∧
𝐶 # 0)) → (((𝐵↑2) − 𝐷) / 𝐶) = (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶))) |
| 74 | 24, 26, 27, 73 | syl3anc 1249 |
. . . 4
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((𝐵↑2) − 𝐷) / 𝐶) = (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶))) |
| 75 | 74 | eqcomd 2202 |
. . 3
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶)) = (((𝐵↑2) − 𝐷) / 𝐶)) |
| 76 | 75 | oveq2d 5938 |
. 2
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) / 𝐶) − (𝐷 / 𝐶))) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 𝐷) / 𝐶))) |
| 77 | 9, 72, 76 | 3eqtrd 2233 |
1
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((((𝐶 · 𝐴) + 𝐵)↑2) − 𝐷) / 𝐶) = (((𝐶 · (𝐴↑2)) + (2 · (𝐴 · 𝐵))) + (((𝐵↑2) − 𝐷) / 𝐶))) |